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Journal of
Fluids

Engineering Guest Editorial

Alternative LES and Hybrid RANS ÕLES for Turbulent Flows

After more than 30 years of intense research on large-eddy
simulations~LES! of turbulent flows based on eddy-viscosity sub-
filter models,@1#, there is now consensus that such an approach is
subject to fundamental limitations. It has been demonstrated for a
number of different flows that the shear stress and strain tensors
involved in subfilter eddy-viscosity models have different topo-
logical features rendering scalar eddy-viscosity models inaccurate.
There have been other proposals that do not employ the assump-
tion of colinearity of strain and stress embedded in the eddy-
viscosity models, e.g., the scale-similarity model of Bardina@2#.
However, such models are numerically unstable, and more recent
efforts have focused on developing mixed models, combining in
essence the dissipative eddy-viscosity models with the more ac-
curate but unstable scale-similarity models. The results from such
mixed models have been mostly satisfactory but the implementa-
tion and computational complexity of the combined approach
have limited its popularity.

Recognizing the aforementioned difficulties but also motivated
by new ideas pioneered at the Naval Research Laboratory by Jay
Boris, several researchers have abandoned the classical formula-
tion and started employing the original, unfiltered, Navier-Stokes
equations~NSE! instead of the filtered ones. In this case, one
could useab initio scale separation with additional assumptions
for stabilization, or invoke monotonicity via nonlinear limiters
that implicitly act as a filtering mechanism for the small scales.
The latter was the original proposal of Boris et al.@3# in the early
1990s, although as a concept it goes back to von Neumann and
Richtmyer, who were working on explicit artificial dissipation
schemes. It was actually this concept that also motivated Smago-
rinsky @4# in developing his model. An intriguing feature of the
monotonically integrated LES~or MILES! approach,@3#, is the
activation of the limiter on the convective fluxes and its role in
generatingimplicitly a tensorial form of eddy-viscosity that acts to
stabilize the flow and suppress oscillations.

Today development of more sophisticated subgrid scale~SGS!
models is actively pursued, andalternativenonclassical formula-
tions are being developed. The features of the new LES models
can be investigated based on the partial differential equations sat-
isfied by the numerical solution—the modified LES equations,
which reveal the competing effects of discretization and explicit
SGS modeling. From this perspective,all numerical schemes pro-
vide a built-in implicit SGS model effectively enforced by the
leading order discretization errors. The modified LES equations’
analysis can likewise be used to address the extent to which a
specific implicit SGS model might be adequate by itself when
suitable algorithms are used, or when additional filtering and/or
approximate deconvolution procedures are included as part of the
overall LES approach.

For turbulent flows of industrial complexity the Reynolds-
averaged Navier-Stokes~RANS! equations, with averaging typi-
cally carried out over time, homogeneous directions, or across an
ensemble of equivalent flows has been employed. Additional
semi-empirical information on the turbulence structure and its re-

lation to the mean flow may also be required depending on the
variant of the RANS model. A new trend, which had a fair amount
of success, is to combine RANS with LES in order to exploit the
best features of both approaches in a complementary manner. LES
is capable of simulating flow features which cannot be handled
with RANS, such as significant flow unsteadiness and strong
vortex-acoustic couplings. However, this added capability carries
a high computational cost—at least an order of magnitude more
expensive than RANS, and it is a particularly important problem
when LES is applied to the entire flow domain. As a consequence,
hybrid RANS/LES approaches have been developed restricting
the use of LES to flow regions where it is crucially needed while
using RANS elsewhere. Such developments are thought to be par-
ticularly effective for practical flow configurations.

These new advances both on the LES as well as the RANS
fronts have attracted a lot of interest recently and have comprised
a special focus of several workshops and conferences. Four well
attended invited sessions on ‘‘Alternative LES and Hybrid RANS/
LES’’ addressing this timely subject were organized by one of us
~F.F.G.! at the 40th AIAA Aerospace Sciences Meeting at Reno,
NV, Jan. 14–15, 2002. Thirteen selected papers from those ses-
sions are included in this special issue of JFE: The first nine are
devoted to alternative LES formulations, and the following four to
hybrid RANS/LES.

In thefirst paper, Domaradzki and Radhakrishnan use concepts
from their SGS estimation modeling approach to develop an LES
procedure which employs the NSE truncated to an available mesh
resolution. Operationally, the procedure consists of numerically
solving the truncated NSE and a periodic processing of the small-
scale component of its solution. The use of this approach is ex-
emplified by simulations of Raleigh-Be´nard convection. In the
second paperVon Kaenel et al. describe their approximate decon-
volution model for LES based on a second-order finite volume
scheme, in which an approximation of the unfiltered solution is
obtained by repeated filtering, and given a good approximation of
the unfiltered solution, the nonlinear terms of the NSE are com-
puted directly. The effect of scales not represented on the grid is
modeled by a relaxation regularization involving a secondary filter
operation. Simulations of a supersonic turbulent channel flow with
this approach are presented. In thethird paper, Visbal and
Rizzetta describe an LES approach on curvilinear grids combining
the use of 4th and 6th-order compact differencing and 10th-order
low-pass Pade´-type filtering schemes. The performance of their
approach is illustrated in the simulation of decaying compressible
isotropic turbulence and turbulent channel flow.

In the fourth paper, in the monotonically integrated LES
~MILES! approach, Grinstein and Fureby focus on the unfiltered
NSE and on emulating~near the LES cutoff!, the high-wave-
number end of the inertial subrange region—characterized by thin
filaments of intense vorticity embedded in a background of weak
vorticity. This motivates using numerical~flux-limiting! schemes
incorporating a sharp velocity-gradient capturing capability oper-
ating at the smallest resolved scales. A formal analysis of MILES
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is carried out based on the modified equations and applications
discussed include both free and wall-bounded flows. In thefifth
paper, Margolin et al. demonstrate the effectiveness of monoto-
nicity ~sign! preserving formulations by arguing that the leading
order truncation error introduced by nonoscillatory finite volume
schemes represents a physical flow regularization term, providing
necessary modifications to the governing equations that arise
when the motion ofobservables—finite volumes of fluid con-
vected over finite intervals of time—is considered. Their analysis
is based on Burgers’ equations and the modified equations, and
illustrated with simulations of fully developed turbulence. In the
sixth paper, Yan et al. report the first LES predictions of heat
transfer in adiabatic and isothermal supersonic flat-plate boundary
layers using the MILES technique.

In the seventh paper, the basic modeling idea in the simulation
method presented by Fan et al. is similar to that used in shock
capturing, where intrinsically discrete equations are satisfied in
thin modeled regions. Their vorticity confinement method does
not attempt to accurately discretize the flow equations, but, rather,
serves as an implicit nonlinear model of the vortical structures
directly on the grid, where structures at the smallest scales~;2
grid cells! are captured and treated effectively as solitary waves.
Applications presented include simulations of flows over round
and square cylinders and a realistic helicopter landing ship. In the
eighth paper, Kirby and Karniadakis present an overview of their
spectral vanishing viscosity~SVV! method and its proper use in
achieving monotonicity without changing the formal~spectral! ac-
curacy of their discretizations. Some new enhancements of the
technique presented here include a new SVV filtering for the con-
tinuous Galerkin method in which filtering is accomplished on a
fully orthogonal set of modes, and a proposed new method to
compute adaptively the viscosity amplitude according to the local
strain. Results for turbulent incompressible channel flow are pre-
sented to illustrate the application of the method. In theninth
paper, Persson et al. consider the homogenization method as al-
ternative to the filtering approach fundamental to conventional
LES; it consists of finding a so-called homogenized problem—
i.e., finding an homogeneous ‘‘material’’ whose overall response
is close to that of the heterogeneous ‘‘material’’ when the size of
the inhomogeneity is small. The authors develop an
homogenization-based LES model using a multiple-scales expan-
sion technique and taking advantage of the scaling properties of
the NSE. This method is used to simulate forced homogeneous
isotropic turbulence and turbulent channel flow, and results are
compared with available DNS results and laboratory data.

In the area of hybrid RANS-LES, in thetenth paper, Constan-
tinescu et al. present prediction of the flow over a prolate spheroid
using the detached-eddy Simulation~DES!, in addition to solu-
tions obtained from of the unsteady RANS equations. The study

offers the opportunity to gain some insight into application of
DES to a complex flow experiencing smooth-surface separation
and to also assess corrections for streamline curvature and a non-
linear constitutive relation applied to the underlying RANS
model. In theeleventh paper, Forsythe et al. computed the super-
sonic flow around a missile base using DES along with several
RANS models. This work offers an opportunity to compare DES
and RANS predictions against experimental measurements in a
compressible flow, allowing assessment of corrections to the
RANS models for compressibility. Predictions of the base pres-
sure and structure of the wake are among the results that are
presented.

In the twelfth paper, Morton et al. use DES to predict the flow
over a delta wing at 27 deg angle of attack, contrasting the calcu-
lations against unsteady RANS predictions that include correc-
tions for streamline curvature. A key feature of the configuration
and a challenge to models is prediction of vortex burst over the
wing. Results of the flow structure are presented along with quan-
titative comparison to experimental measurements of kinetic en-
ergy levels in the vortex core. In thethirteenth and final paper,
Fasel et al. apply a hybrid RANS-LES approach coined as ‘‘Flow
Simulation Methodology’’ in which a contribution function is in-
troduced to delineate the level of predicted stress that is modeled
and resolved. Application of the method to wall-bounded and
open flows is presented.

We would like to thank Prof. Kyle Squires for summarizing the
highlights of the RANS/LES papers. On behalf of all authors con-
tributing to this special issue, we are grateful to JFE Technical
Editor, Prof. Joe Katz, for recognizing the timeliness and impor-
tance of this subject, and we offer sincere thanks to Ms. Laurel
Murphy for her patience and skill in coordinating various aspects
of the review and processing of the papers.
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Subgrid-Scale Modeling of
Turbulent Convection Using
Truncated Navier-Stokes
Dynamics
Using concepts from the subgrid-scale estimation modeling we develop a procedure for
large-eddy simulations which employs Navier-Stokes equations truncated to an available
mesh resolution. Operationally the procedure consists of numerically solving the trun-
cated Navier-Stokes equation and a periodic processing of the small scale component of
its solution. The modeling procedure is applied to simulate turbulent Rayleigh-Be´nard
convection.@DOI: 10.1115/1.1514206#

1 Introduction
The large-eddy simulation~LES! equations for an incompress-

ible flow are formally obtained by filtering, signified by an over-
bar, of the full Navier-Stokes equations

]

]t
ūi1

]

]xj
ūi ū j52

1

r

]

]xi
p̄1n

]2

]xj]xj
ūi2

]

]xj
t i j (1)

]

]xi
ūi50, (2)

whereui5(u1 ,u2 ,u3)5(u,v,w), p, andn are the velocity, pres-
sure, and the kinematic viscosity, respectively. In deriving~1! and
~2! it is assumed that the filtering and differentiation commute and
the filtered productuiuj is rewritten in the form of the subgrid
scale~SGS! stress tensor

t i j 5uiuj2ūi ū j , (3)

such that the remaining terms form the Navier-Stokes equation for
the filtered velocityūi . The SGS stress tensor is the quantity that
requires modeling in LES. The averaging for a quantityf (x) is a
linear operation, denoted byLG , and usually is defined as a con-
volution integral with a given smoothing kernelG

f̄ ~x!5LGf ~x!5E G~x2x8! f ~x8!dx8. (4)

In actual LES in addition to a spatial filtering the ‘‘bar’’ operation
involves an implicit projection on a numerical mesh that has an
effect of discarding information about subgrid scales smaller than
twice the mesh size. The partui

L of the total velocity field with the
spectral support determined by the mesh resolution can be recov-
ered by various deconvolution procedures~e.g., @1–3#!. The ef-
fects of the remaining subgrid scalesui

S must be modeled. Most
frequently they are modeled using eddy viscosity concepts. An-
other approach is to introduce explicit physical models for the
subgrid scales and then compute the SGS stress tensor from the
definition ~3!. For instance, Scotti and Meneveau@4# construct
subgrid scales using the fractal interpolation technique and Hylin
et al. @5# use chaotic maps. Kerr et al.@6# model unresolved
subgrid-scale vorticity by calculating the vorticity production by
the resolved scales in a limited range of wave numbers outside the
resolved range. The approximate inertial manifolds theory of

Foias et al.@7# provides an approximate expression for the un-
known, subgrid modes. Concepts from the approximate inertial
manifolds theory are also employed in the dynamic multilevel
method of Dubois et al.@8# where a separate dynamic equation is
used to determine subgrid scales. Similarly, Zhou et al.@9# solve
the additional dynamic equation for a range of subgrid scales us-
ing the Smagorinsky model.

The subgrid-scale estimation model of Domaradzki et al.
@10,11# provides the estimate of the unfiltered velocity field ap-
pearing in the definition of the subgrid-scale stress tensor. It con-
sists of two steps. In the kinematic step an approximate inversion
of the filtering operation is performed on an LES mesh as in the
deconvolution approaches. Subsequently, the nonlinear step is
used to model a range of subgrid-scales on a mesh two times finer
than the LES mesh. The SGS estimation model was applied to
LES of low Reynolds number incompressible turbulence in chan-
nel flow, @10–12#; to spatially evolving compressible turbulence,
@13,14#; to isotropic turbulence in a rotating frame,@15#; and to
Rayleigh-Bénard convection,@16#, providing generally very good
results. A simple modification to increase the nonlinear couplings
was developed in@17# to address the inertial range dynamics in
high Reynolds number turbulence. That approach as well as the
original estimation model can be viewed as special cases of a
more general LES procedure which evolves the estimation veloc-
ity using the truncated Navier-Stokes equations and which was
investigated recently in@18# and @19#. In the procedure the large
eddy simulation equations are advanced in time with the subgrid-
scale stress tensor calculated from the parallel solution of the trun-
cated Navier-Stokes equations on a mesh two times smaller in
each Cartesian direction than the mesh employed for a discretiza-
tion of the resolved quantities. The truncated Navier-Stokes equa-
tions are solved through a sequence of runs, each initialized using
the subgrid-scale estimation model. The modeling procedure was
evaluated in@20# by comparing results of large-eddy simulations
for isotropic turbulence and turbulent channel flow with the cor-
responding results of experiments, theory, direct numerical simu-
lations, and other large-eddy simulations.

It was further proposed in@20# that this approach can be sim-
plified by dispensing entirely with the LES equations and associ-
ated SGS quantities and retaining only the truncated Navier-
Stokes~TNS! part of the method. Here, we investigate such a
simplification that does not invoke the concept of the subgrid-
scale stress tensor at all. The procedure is formulated solely in
terms of the truncated Navier-Stokes equation and a periodic pro-
cessing of the small scale component of its solution. The method
shares some similarities with various methods that replace the
physical models of the subgrid scale tensor by the mathematical
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regularization procedures, see e.g.@21–24#, some of them known
as the monotonically integrated large-eddy simulations~MILES!.

In the next section we describe rationale for the proposed ap-
proach provided by the previous work on the SGS estimation
model. That section concludes with a description of specific steps
that are used to implement the method. The results of simulations
for turbulent Rayleigh-Be´nard convection are described in follow-
ing section.

2 Truncated Navier-Stokes Equations Applied to Sub-
grid Scale Modeling

In order to discuss how the unresolved part of the modeled
velocity can be constructed let us consider an idealized large-eddy
simulation coupled to a fully resolved direct numerical simulation
~DNS!. At each time-step in DNS the full velocity fieldui is
known on a mesh with the mesh sizeDDNS and the subgrid-scale
~SGS! stresst i j can be computed and used to advance the large-
eddy simulation~LES! equations on a coarser mesh withDLES
@DDNS. In practice there is no guarantee that the solutionui of
the LES equations will follow the filtered and truncated solution
of the Navier-Stokes equations for all times. If both systems are
chaotic even small numerical errors in computingt i j may cause
both solutions to decorrelate in time. According to the statistical
predictability theory the decorrelation time is on the order of sev-
eral large-eddy turnover periods~Lesieur@25#!. In order to prevent
decorrelation one may periodically replace the large scalesui

L in
DNS by the corresponding large scales from LES, i.e., the result
of deconvolvingui . In such a procedure the continuous in time
LES evolution is coupled to a sequence of periodically reinitial-
ized DNS. Of course, in actual LES information from a fully
resolved DNS will never be available. Consider then truncated
Navier-Stokes~TNS! equations with the truncation wave number,
Kc , intermediate between the truncation wavenumber in LES,kc ,
and the Kolmogoroff wave number in DNS,kh , i.e., kc,Kc
!kh . If the same initial condition is used to numerically solve all
three equations, i.e., DNS, LES, and TNS, the following qualita-
tive picture is expected. First, after some fraction of the large-
eddy turnover time the TNS solution will begin to deviate from
the DNS solution, initially for the largest wave numbers, which
have the fastest time scale, and the error will propagate progres-
sively toward large scales. However, by the predictability argu-
ment, there will be a finite time, sayT, over which TNS and DNS
solutions will remain close to each other for wave numbers less
than the LES cutoffkc . Second, for these times andKc suffi-
ciently larger thankc the SGS stress tensor in LES computed
using TNS solution will be a good approximation to the actual
SGS stress computed from DNS data. If these expectations are
correct then the SGS stress could be computed from a solution of
a parallel TNS simulation that is much less expensive than the full
DNS. Similarly to the idealized LES discussed above the TNS
would need to be re-initialized with a period on the order ofT to
conform to the actual DNS solution at large wave numbers and to
the LES solution in the resolved range. To be successful as a
modeling tool such a procedure requires a method for the periodic
re-initialization of TNS and the determination of the time periodT
and the truncation wave numberKc . Guidelines are provided by
previous work in this area~Domaradzki et al.@10–12#! that has
established that it is sufficient to take the intermediate wave num-
ber Kc twice as large as the LES cutoffkc and the time periodT
on the order of the eddy turnover time of the smallest resolved
scales.

Accordingly, we will consider the LES Eqs.~1!–~2! for the
velocity ūi together with the truncated Navier-Stokes equations
for the estimated velocityũi

]

]t
ũi1

]

]xj
ũi ũ j52

1

r

]

]xi
p̃1n

]2

]xj]xj
ũi , (5)

]

]xi
ũi50. (6)

The LES velocity is the result of filtering the full Navier-Stokes
velocity ui with a top hat filter with a filter widthD and is repre-
sented on a mesh with the mesh sizeDLES ~or the spectral cutoff
kc), where we chooseDLES5D/2. The mesh sizeDTNS used to
representũi is a factor of two smaller than the mesh sizeDLES,
DTNS5DLES/2, ~or the spectral cutoff is 2kc). Initial conditions for
the TNS velocityũi periodically required by the procedure are
constructed from the corresponding LES velocityūi using the
estimation model described in detail in@11#. The complete proce-
dure is illustrated in Fig. 1.

Also, note that the term ‘‘truncated’’ applied to Eqs.~5!–~6!
refers not to the form of the equations, which is no different from
the form of the full Navier-Stokes equations, but to the limited
numerical resolution used to solve these equations.

The main purpose of advancing in time two sets of equations,
LES and TNS, is the consistency with the traditional LES formal-
ism and the clear definition of the large-scale quantities, e.g.,ūi ,
as a solution of the LES equation. However, in principle the in-
formation about the LES solutionūi should be contained in the
TNS solutionũi . If this information could be extracted then the
task of solving the LES equation could be avoided. In a case of a
sharp spectral filter the large-scale componentūi is obtained trivi-
ally from ũi by setting to zero all Fourier modes with wave num-
bersk.kc , wherekc is the coarse LES mesh cutoff wave number.
However, in a more general case of spatial filters the extraction of
the large-scale component from the complete fieldũi

(2N) presents
difficulties. Consider the initial condition for TNS,ũi(t)5ũi

0(t)
1ũi8(t), on the fine mesh. Hereũi

0 is the result of a deconvolution
of ūi

(N) performed on the coarse LES mesh and then interpolated
to the fine TNS mesh andũi8 is the estimated subgrid scale veloc-
ity on the fine mesh. Because the physical space operations are
used to construct this field bothũi

0(t) andũi8(t) overlap spectrally
althoughũi

0(t) is dominated by the large scales andũi8(t) by the
small scales. If now the fieldũi(t) is filtered and sampled on the
coarse LES mesh the result will contain a contribution from the

Fig. 1 The large-eddy simulation procedure. The superscripts
„N… and „2N… refer to the LES and TNS resolution, respectively.
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spectral content ofũi8(t) in the large scales. This implies that the
field ũi

0(t) cannot be recovered from the completeũi(t) by filter-
ing and sampling alone. It is possible to write a coupled set of
equations for fieldsũi

0(t) andũi8(t) and follow their evolution for
time T. The fieldũi

0(t1T) from such a run would be the required
large-scale field at timeT needed to initialize the next run in the
sequence. However, if only the completeũi(t1T) is known the
field ũi

0(t1T) cannot be obtained by sampling and filtering in the
physical space and additional approximations must be invoked.
We have used the following procedure. Consider a formal inverse
of the linear operatorLG in ~4! as a power series expansion

LG
215~ I 2~ I 2LG!!215I 1~ I 2LG!1~ I 2LG!21 . . . (7)

whereI is the identity operator. Stolz and Adams@3# note that the
product ofLG and a finite term truncation of~7! produces a filter
which strongly damps the smallest resolved scales and does not
affect the largest scales. The further control is provided by a
choice of the filterLG which does not have to be the same as the
original ‘‘bar’’ filter defined as the top hat filter with the width
D52DLES and the Simpson’s rule of integration. We found that
the best compromise in terms of the numerical complexity and the
ability to extract the large-scale component of a field was a com-
bination employing first three terms in~7! and the top hat filter
with the width D5DLES and the trapezoidal rule of integration,
denoted here by ‘‘hat.’’ This combination provides the following
expression for the large-scale component of the fieldũi

ũi
053û̃i23ũ9 i1 û̂̃

ˆ
i . (8)

The perturbation velocityũi8 can be computed using the standard
subgrid scale estimation method,@11,12#, and the large-scale ve-
locity ~8! obtained from the TNS velocityũi . To avoid the con-
tamination of the mean ofũi

0 by the mean ofũi8 , however small it
is, it is replaced by

ũi95ũi82 û̃i8 . (9)

With these definitions the modeling procedure that does not use
LES equations at all and is formulated entirely in the physical
space reads

ũi
0~ t !→ũi9~ t !→@ ũi~ t !5ũi

0~ t !1ũi9~ t !# →
N2S

ũi~ t1T!→ũi
0~ t1T!.

(10)

Between timet and t1T the estimated fieldũi evolves through
the truncated Navier-Stokes equation solved on the fine mesh with
the cutoff 2kc . In some cases, especially at lower Reynolds num-
bers, the estimated subgrid velocityũi9 can be simply set to zero at
time intervalsT. In this case the subgrid scalesũi9 at intermediate
times will be generated by Navier-Stokes dynamics from the ini-
tial condition ũi

0. Such an approach met with success in LES of
isotropic turbulence in a rotating frame,@15#, and is also applied
here.

In summary, the method is applied operationally as follows.
First, a mesh with the mesh sizeDTNS is constructed and the
truncated Navier-Stokes Eqs.~5! and ~6! are discretized on that
mesh. Note that this step is just a standard DNS implementation of
the Navier-Stokes equations on a given mesh; the term TNS sim-
ply signifies that the numerical resolution is insufficient to per-
form accurate DNS. Using a particular initial condition for the
velocity field ũi(t0) the TNS equations are solved numerically for
a prescribed timeT. The timeT is a free parameter in the method
and is determined using the theoretical estimate of the eddy turn-
over time of the smallest resolved scales or can be determined by
a numerical experimentation. At timet01T the velocityũi is fil-
tered using Eq.~8!. The ‘‘hat’’ denotes the top hat filter with the
filter width twice the mesh size, i.e.,D52DTNS. Numerically it is
implemented by applying the trapezoidal rule of integration over
interval spanning three neighboring mesh points. The perturbation

velocity ũi9 in this work is simply set to zero so thatũi(t01T)
5ũi

0(t01T). This becomes the initial condition for the TNS run
for the next time intervalT. Therefore, the complete simulation
consists of a sequence of TNS runs, each initialized by applying
filter ~8! to the velocity field at the last time-step in the preceding
TNS run.

3 Numerical Simulations
In @20# the method has been implemented for forced and decay-

ing isotropic turbulence and for turbulent channel flow. However,
in contradistinction to the present work the perturbation velocity
ũi9 at time intervalsT was computed using the subgrid scale~SGS!
estimation model methodology and was nonzero. The simulation
results were in a very good agreement with experiments and direct
numerical simulations. In the application of the truncated Navier-
Stokes~TNS! to simulate isotropic turbulence in a rotating frame
the perturbation velocity~9! was set to zero at the beginning of
each TNS subrun,@15#. A very good agreement with the corre-
sponding direct numerical simulation~DNS! results was obtained.
Here, we extend and evaluate this TNS procedure for flows af-
fected by buoyancy effects, choosing a case of turbulent Rayleigh-
Bénard convection between two parallel plates. The temperature
equation for the estimated temperatureT̃ in the Boussinesq ap-
proximation is

]

]t
T̃1

]

]xj
ũj T̃5k

]2

]xj]xj
T̃. (11)

Also the truncated momentum Eq.~5! is modified by adding the
buoyancy term

]

]t
ũi1

]

]xj
ũi ũ j52

1

r

]

]xi
p̃1n

]2

]xj]xj
ũi1@12a~ T̃2T0#gi .

(12)

In the equations abovek is the conductivity,a the volumetric
expansion coefficient,gi the gravitational acceleration, andT0 is
the constant reference temperature. The fluid is bounded by two
square, rigid horizontal walls with a linear dimensionL, and sepa-
rated by a distanceH. The upper wall is maintained at temperature
T0 and the lower wall at higher temperatureT15T01DT, creat-
ing unstable stratification. The strength of convection is deter-
mined by the Rayleigh number

Ra5
agH3DT

kn
. (13)

All simulations were performed in a box with the aspect ratio
L/H56. The details of the numerics are described by Domaradzki
et al.@10,11# and Loh and Domaradzki@12#. We employ a numeri-
cal Navier-Stokes code developed by Chan@26# which uses a
pseudo-spectral numerical method for spatial discretization with
Fourier expansions in the streamwise and spanwise directions, and
Legendre polynomials in the wall normal direction. As for all
spectral codes the numerical dissipation is negligible. Three-
dimensional filters were obtained as a tensor product of one-
dimensional filters. The simulation parameters are reported in
Table 1. In particular, the TNS are re-initialized everyNT520
time steps using Eq.~8! applied to velocity and temperature fields.
The values of the Rayleigh number were chosen to be the same as
in the classical experiments of Deardorff and Willis@27#. Among
quantities of interest is the Nusselt number which is the measure
of the heat flux across the layer

Nu5
2kd^T&/dz1^w8T8&

kDT/H
, (14)

where the fluctuating temperatureT8 and vertical velocityw8 are
variations from the mean
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T85T2^T&,

w85w2^w&,

where^ . . . & denotes a horizontally averaged quantity.
The case UDNS is an under-resolved direct numerical simula-

tion. The grid size 642333 was the smallest that allowed at this
Rayleigh number stable time integration by the numerical scheme
used. For a fully resolved DNS the grid requirement is 1282365
according to Christie and Domaradzki@28#. The TNS at this Ray-
leigh number were performed with two different resolutions, cases
CTNS1 and CTNS2. The same resolutions were used for cases
CTNS3 and CTNS4 at Ra52.53106 while the lower resolution of
322333 mesh points was used in the remaining high Rayleigh
number case CTNS5. For a fully resolved DNS at Ra51.03107

the resolution requirements given by Kerr@29# are 2882396 mesh
points. The Nusselt number averaged over the layer fluctuates in
time as shown in Fig. 2. Superimposed on the long-time fluctua-
tions are short-time variations caused by the periodic filtering~8!.
These variations can be removed by defining Nu in terms of large-
scale quantitiesũi

0 and T̃0 rather than the complete estimated
quantitiesũi and T̃ which contain subgrid scales that are periodi-
cally filtered out.

The Nusselt number across the convective layer averaged over
several time instants is shown in Fig. 3 for all cases at Ra56.3
3105. The under resolved DNS shows the largest departure from
the experimental data which is improved by applying the model at
the same resolution~case CTNS1!. Surprisingly the best agree-
ment with the experiment is obtained in the lower resolution TNS
simulation CTNS2. For Ra52.53106 the Nusselt number was
around 9.5 and 8.1 for the cases CTNS3 and CTNS4, respectively,
while the experimental value is close to 9.0. For the case CTNS5
the value of Nu is 11.5 and compares well with the experimental
value around 12.5. Therefore the TNS approach predicts the av-
eraged heat flux quite well even at these low resolutions.

Further assesment of the modeling precedure is made for the
highest Rayleigh number case CTNS5. The mean temperature
^T&(z) is reproduced by the TNS very well~Fig. 4!. The observed
good agreement in the vicinity of the wall explains why the heat
flux predictions are in a good agreement with the experimental
results. Indeed, according to Eq.~14! the heat flux at the wall is
determined solely by the mean temperature gradient because the
fluctuating quantitiesw8 and T8 vanish. The rms values of the
temperature~Fig. 5! and horizontal and vertical components of theFig. 2 Time variation of Nu for the case CTNS2

Fig. 3 Nu across the convective half-layer at Ra Ä6.3Ã105.
Solid line: case UDNS; dashed line: case CTNS1; dashed-
dotted line: case CTNS2; dashed-asterisk line: averaged Nu
from experiments of Deardorff and Willis †27‡.

Fig. 4 Mean temperature ŠT‹„z… for the case CTNS5. Solid
line: model; asterisks: experiment.

Fig. 5 Rms temperature fluctuation for the case CTNS5. Solid
line: model; asterisks: experiment.

Table 1 Parameters for simulations of Rayleigh-Be ´nard con-
vection. Experimental values of the Nusselt number Nu exp from
†27‡.

Case Grid Ra Dt NT Nu Nuexp

UDNS 642 3 33 6.33 105 1025
¯ 7.8 5.8

CTNS1 642 3 33 6.33 105 1025 20 6.8 5.8
CTNS2 322 3 33 6.33 105 1025 20 6.1 5.8
CTNS3 642 3 33 2.53 106 1025 20 9.5 9.0
CTNS4 322 3 33 2.53 106 1025 20 8.1 9.0
CTNS5 322 3 33 1.03 107 1025 20 11.5 12.5

826 Õ Vol. 124, DECEMBER 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



velocity ~Figs. 6 and 7, respectively! are in a good qualitative
agreement with the experimental values though the peak values do
not match exactly. We conclude that the TNS procedure is capable
to properly model turbulent convection flows at numerical resolu-
tions on the order of only 1 percent of the resolution required for
DNS.

4 Conclusions
In closing, the method~10! relies on the dynamics of the trun-

cated Navier-Stokes equations and a periodic replacement of the
small-scale component by the modeled field obtained using the
subgrid scale estimation procedure. If the energy of the new mod-
eled field,ũi

ini(t1T), is less than the energy of the field that is
being replaced,ũi

end(t1T), then the method can be seen as a
dissipative model with the entire dissipation occuring at discrete
times rather than continuously. It is thus possible that for such
situations the described approach is equivalent to traditional dis-
sipative subgrid scale~SGS! models. Nevertheless, updating the
small scales at discrete times rather than continuously may be
preferred. For an imperfect model of the subgrid scales which is
applied continuously the modeling error will propagate and con-
taminate the large scales in predictability time. This raises the
possibility that the long-time energy balance between the resolved
and the modeled subgrid scales will be incorrect, for instance
different from that implied by the Kolmogoroff theory for high
Reynolds number turbulence. In the truncated Navier-Stokes
~TNS! model the subgrid scales are generated and affected only
by the Navier-Stokes dynamics. Consequently, such a method
should better capture energy transfer properties of actual turbu-
lence. There are additional advantages of the proposed approach.

The method can be easily implemented for an arbitrary Navier-
Stokes solver without changing its internal structure but merely
processing a solution at discrete times. New physical phenomena
such as related to temperature effects in convection and stratified
turbulence, compressibility, rotation, etc., can be treated in the
same framework without a need for new closure assumptions and
concepts such as the turbulent Prandtl number. The procedure is
fairly robust. The only major parameter in the method is the reini-
tialization periodT and the large-eddy simulation~LES! results
were found to be quite insensitive to variations inT even by a
factor of two. Because the explicit filter is used its width can be
tailored to the available numerical resolution. Since the modeling
procedure does not invoke assumptions of local isotropy and the
inertial range it may be expected to be applicable to strongly
anisotropic flows. Therefore, it may be a good candidate for
VLES where only the energy peak is assumed to be resolved and
the unresolved subgrid scales are neither in the inertial range nor
isotropic.

However, there are physical phenomena that this approach will
not be able to address. The primary assumption in the method is
that the small scales of turbulence originate from the larger scales,
consistent with the Kolmogoroff picture of the turbulent cascade
process. If the assumption of this unidirectional coupling, from
large to small scales, is violated the method will break down. The
typical example is combustion, where the chemical processes on
the molecular scale affect the larger, hydrodynamic scales. The
additional concerns in using this approach is its numerical cost,
application to engineering flows in complex geometries and at
high Reynolds numbers, and implementation in finite difference or
finite element codes. If resolved quantities of interest are repre-
sented onN mesh points in each Cartesian direction the modeled
TNS quantities require 2N points. Therefore, formally in three
dimensions the TNS resolution is almost an order of magnitude
greater than that required to discretize the underlying resolved
fields. However, this may not be a more serious drawback that
encountered by traditional LES where only the largest scales are
represented accurately while the small scales from the vicinity of
a mesh cutoff are affected by the modeling and truncation errors.
For instance, Lund and Kaltenbach@30# suggest that those errors
should in general be removed by an explicit filtering of the small-
est scales at each time-step. Therefore, the effective resolution in
such a LES will be less than the nominal mesh resolution, simi-
larly to the TNS approach. The TNS method can be applied to
flows in complex geometries if the underlying Navier-Stokes
solver can handle such flows. Indeed, the method only adds peri-
odic processing of a solution without a need to change the Navier-
Stokes solver. The TNS approach has been previously applied to
high Reynolds number isotropic turbulence correctly reproducing
the k25/3 spectrum and the Kolmogoroff constant,@20#. The ap-
plication of the method to high Reynolds number wall bounded
flows and in the context of finite difference codes is currently in
progress.
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The Approximate Deconvolution
Model for Large-Eddy Simulation
of Compressible Flows With
Finite Volume Schemes
The approximate deconvolution model for large-eddy simulation is formulated for a
second-order finite volume scheme. With the approximate deconvolution model, an ap-
proximation of the unfiltered solution is obtained by repeated filtering, and given a good
approximation of the unfiltered solution, the nonlinear terms of the Navier-Stokes equa-
tions are computed directly. The effect of scales not represented on the numerical grid is
modeled by a relaxation regularization involving a secondary filter operation. A turbulent
channel flow at a Mach number of M51.5 and a Reynolds number based on bulk quan-
tities of Re53000 is selected for validation of the approximate deconvolution model
implementation in a finite volume code. A direct numerical simulation of this configura-
tion has been computed by Coleman et al. Overall, our large-eddy simulation results
show good agreement with our filtered direct numerical simulation data. For this rather
simple configuration and the low-order spatial discretization, differences between ap-
proximate deconvolution model and a no-model computation are found to be small.
@DOI: 10.1115/1.1511167#

Introduction
Most flows of practical interest are turbulent, and for industrial

applications it is important that these flows can be computed by
numerical simulation with sufficient accuracy. However, numeri-
cal solutions of the Reynolds-averaged Navier-Stokes equations
often fail to predict the proper flow behavior, in particular in cases
where the flow exhibits large-scale unsteadiness, separation, or
shock-turbulence interaction~@1#!.

In large-eddy simulations~LES!, the solution of the Navier-
Stokes equations is convolved with a smoothing filter which re-
duces the numerical-resolution requirements for the filtered solu-
tion at the expense of a model for the resolved-scale/
nonrepresented-scale interaction. Stolz and Adams@2# have
developed a subgrid-scale model based on approximate deconvo-
lution ~ADM ! and have demonstrated excellent performance of
the model for a number of canonical flow configurations~@3,4#!,
including shock-turbulence interaction in a boundary layer. For
flows at higher Reynolds numbers, a relaxation regularization is
employed to represent the resolved-scale/nonrepresented-scale in-
teraction. So far computations were performed with high-order
~fourth-order, sixth-order! finite difference schemes and spectral
schemes. Test computations with second-order finite difference
schemes for isotropic turbulence have shown that the filter-cutoff
wave number should be adjusted to the maximum wave number
which can be considered to be well resolved by the underlying
discretization scheme, employing the modified wave number con-
cept @5#. In this paper we address the formulation of ADM for a
given second-order finite volume scheme without further consid-
eration of the resolution properties of this scheme. The objective
is to test ADM for a numerical method which is being used in
standard CFD design tasks of the aerospace industry.

We first introduce the governing equations and then briefly
present the filtering, deconvolution and relaxation procedure.
Next, we summarize the numerical method and introduce the pa-

rameters of our test case. Finally, the results of four different data
sets, DNS, filtered DNS, LES with ADM, and underresolved
DNS, are compared and analyzed.

Governing Equations
A flow in a plane channel with periodic boundary conditions in

the streamwise (x15x) and spanwise (x25y) directions is con-
sidered. The computational domain with volumeV is spanned by
a Cartesian coordinate system. The flow is described by the com-
pressible Navier-Stokes equations for an ideal gas with ratio of
specific heatsg51.4. Nondimensionalized with the wall tempera-
ture Tw , the channel half-widthH, the bulk velocity ub
5*VrudV/(Vrb), and densityrb5*VrdV/V, the continuity,
momentum and energy equations read~summation rule applies!:

]r

]t
1

]

]xj
~ruj !50 (1)

]
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~rui !1
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]xj
~ruiuj !1
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]xi
2

]s i j

]xj
52 f 1d i1 (2)

]E

]t
1

]

]xj
~E1p!uj2

]

]xj
~s i j ui !1

]

]xj
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with the total energy

E5p/~g21!1
1

2
ruiui , (4)

the temperature

T5gM0
2~p/r!, (5)

and the nondimensional dynamic viscosity

m~T!5T0.7. (6)

The heat fluxes and the viscous stresses are defined as

qj52
m~T!

~g21!Re PrM0
2

]T

]xj
, (7)

1Presently Professor, Technical University Dresden, Dresden, Germany.
Contributed by the Fluids Engineering Division for publication in the JOURNAL

OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
March 12, 2002; revised manuscript received May 31, 2002. Associate Editor: F. F.
Grinstein.

Copyright © 2003 by ASMEJournal of Fluids Engineering DECEMBER 2002, Vol. 124 Õ 829

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s i j 5
m~T!

Re S ]ui

]xj
1

]uj

]xi
2

2

3
d i j

]uk

]xk
D , (8)

with the Reynolds number Re5rbubH/m(Tw), the Mach number
M05ub /AgRTw, and the Prandtl number Pr50.7. The Kronecker
symbol is used,d i j 51 for i 5 j andd i j 50 otherwise. For a peri-
odic wall-bounded flow, the addition of a driving force to the
Navier-Stokes equations is necessary to compensate the wall-
friction forces and to maintain a stationary flow. Following Des-
champs@6#, the flow is driven in the streamwise direction with a
body forcef 1(t) adjusted to the instantaneous solution such that
the total mass flow rate remains stationary. The wall boundary
conditions are no-slip for the velocity and isothermal for the tem-
perature.

Filtering Approach and Approximate Deconvolution
In most large-eddy simulation~LES! methods, filtering is per-

formed implicitly by the projection of the equations onto the com-
putational grid, formally including all wave numbers up to the
Nyquist wave numbervn in the solution. Since for finite differ-
ence or finite volume schemes the wave number up to which
scales can be considered to be resolved is often significantly
smaller thanvn , it is desirable to suppress nonresolved solution
components by application of an explicit filter operation~@5#!.
Even for spectral schemes the relative error at the Nyquist wave
number is of orderO~1!. In the following we will distinguish
between resolved wave numbersuvu<vc , where vc is the
primary-filter cutoff wave number,represented wave numbers
uvu<vn which can be represented on the given mesh, and non-
represented wave numbersuvu.vn .

The governing equations of LES are obtained by applying the
primary-filter operation to the Navier-Stokes equations. Any flow
variableu can be decomposed asu5ū1u81u9 where ū repre-
sents the resolved scales,u8 the represented nonresolved scales,
and u9 the nonrepresented scales. The filtering operation on a
domain@aD, bD# is defined by a convolution of the filter kernelG
and the variable. We define a one-dimensional primary filter op-
eration with compact support by

ū~x!5G* u5E
x2bD

x2aD

GS x2x8

D
,xDu~x8!

dx8

D

5E
a

b

G~z,x!u~x2Dz!dz, (9)

wherez5(x2x8)/D andD5ph/vc is the filter width in physical
space.h is the uniform grid spacing in an equidistantly spaced
computational spacej. The mapping ofx onto j does not need to
be known explicitly.vc is the cutoff wave number of the primary
filter, nondimensionalized withh, andG(z,x) is the primary filter
kernel which may depend explicitly on the locationx. The exten-
sion of this one-dimensional filter to three space dimensions is
obtained by applying the filter in each coordinate direction suc-
cessively

ū~x1 ,x2 ,x3!5G1* G2* G3* u

5E
a3

b3E
a2

b2E
a1

b1

G1~z1 ,x1!G2~z2 ,x2!G3~z3 ,x3!

3u~x12D1z1 ,x22D2z2 ,x32D3z3!dz1dz2dz3 .

(10)

The integration in this definition is discretized by an explicit
quadrature, defined in one space dimension as

ūiª (
j 52n l

nr

a jui 1 j (11)

for the grid functionui , whereui5u(xi). The cell centers in the
finite-volume formulation are denoted asxi . We consider discrete
filters on a five-point stencil withn l1n r54 for interior cells. A
complete derivation of the coefficientsa j can be found in Refs.
@3#, @7#. The definition of the cutoff wave numbervc is somewhat
arbitrary for filters with smooth Fourier transformĜ(v). Here we
choose the criterionuĜ(vc)u51/2, leading tovc'2/3p. The rep-
resented but nonresolved scalesvc,uvu<vn are used to model
the effect of the nonresolved scalesuvu.vc on the resolved scales
uvu<vc . Resolved scales can be recovered by an approximate
inversion of the filter~9! resulting in an approximationu! of the
unfiltered solutionu. The approximate deconvolutionu! is given
by applying the approximate deconvolution operatorQN to ū,

u!5QN* ū. (12)

Assuming that the filterG has an inverse, the inverse operator can
be expanded as an infinite series of filter operators. Filters with
compact transfer functions are noninvertible, but a regularized
inverse operatorQN can be obtained by truncating the series at
someN, obtaining a regularized approximation~@2#! of G21,

QN5(
n50

N

~ I 2G!n'G21 (13)

whereI is the identity operator.
Stolz et al.@3,4# found thatN55 was giving best results for a

wide range of test cases. We therefore setN55 in the following.
Using ~13!, u! can be computed by repeated filtering ofū from

u!5QN* ū5ū1~ ū2u% !1~ ū22u% 1 ū̄
¯

!1 . . .

53ū23u% 1 ū̄
¯

1 . . . . (14)

The adaptation of the approximate deconvolution model
~ADM ! for a finite volume scheme is straightforward. Note that a
finite volume scheme itself comprises a deconvolution when cell-
face values are reconstructed from the cell averages, see, e.g., Ref.
@8#. This approach which can be exploited to construct an approxi-
mate deconvolution method directly by adapting the finite volume
method accordingly, is presently under investigation. Here, we
treat numerical discretization and subgrid-scale modeling as sepa-
rate entities and introduce ADM into the finite volume framework.
For simplicity we first consider a scalar transport equation and
return to the full Navier-Stokes equations later. Starting from the
generic transport equation for the variableC with flux function
F(C), integrated over the computational cellVj

E
Vj

]C

]t
dVj1E

Vj

¹•F~C!dVj50, (15)

whereF(C) is the flux, we can apply the divergence theorem so
that Eq.~15! can be rewritten as

E
Vj

]C

]t
dVj1E

Sj

F~C!ndSj50, (16)

with n being the outward normal vector of the cell surface. On
applying the filter operation to Eq.~15! and exchanging the filter
operation and the volume integration one obtains, under the as-
sumption that divergence operator and filter operator commute,

E
Vj

]C̄

]t
dVj1E

Sj

F~C!ndSj50. (17)

Using the approximately deconvolved solutionC! of C, the fil-
tered flux termF(C) can be approximated directly by replacing
the unfiltered quantityC by C!,
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E
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]C̄

]t
dVj1E

Sj

F~C!!ndSj5E
Sj

~F~C!!2F~C!ndSj ,

(18)

thus avoiding at that point the need of computing extra subgrid-
scale terms.

The energy transfer to nonrepresented scalesuvu.vn is mod-
eled only partially by usingC!. Note that it would not be mod-
eled at all ifC̄ would be deconvolved by singular value decom-
position, since the resulting Eq.~18! with C! replaced byC
restricted to represented scales is energy conserving. This situa-
tion corresponds to the truncated Navier-Stokes approach of
Domaradzki et al.@9# without energy removal. Stolz et al.@3,4#
have proposed a relaxation regularization derived from the re-
quirement that the solution remains well-resolved within the range
uvu<vc . For this purpose, the integral energy of nonresolved
represented scales should not increase, although energy redistri-
bution among these scales is permitted. In order to model the
energy transfer from scalesuvu<vn to scalesuvu.vn energy is
drained from the rangevc,uvu<vn by subtracting a termxC(I
2QN* G)C̄ from the left-hand side of the filtered differential con-
servation law~18!. This expression, which models the nonclosed
termsF(C!)2F(C) of the right-hand side of Eq.~18!, has the
form of a relaxation term with a relaxation parameterxC.0 cor-
responding to an inverse relaxation-time scale. Applying the finite
volume discretization to the resulting equation one obtains

E
Vj

]C̄

]t
dVj1E

Sj

F~C!!ndSj52E
Vj

xC~ I 2QN* G!* C̄dVj

52E
Vj

xC~C̄2C̄!!dVj . (19)

Since (I 2QN* G) is constructed being positive semidefinite, the
relaxation term is purely dissipative. The use of the relaxation
term can also be interpreted as applying a secondary filter toC̄
every 1/(xCDt) time-step,Dt being the time-step of the numeri-
cal integration, which poses the approach in a relation to the trun-
cated Navier-Stokes approach with energy removal of Domar-
adzki et al.@9#. The transfer function of the secondary filterQ̂NĜ
for interior points on the equidistant mesh used in the present
work is shown in Fig. 1.

To close the model without requiring an a priori parameter
choice,xC is estimated dynamically as a function of space and
time. The underlying argument for determiningxC is that in order
to obtain a well-resolved representation of the filtered solution no

energy should accumulate during time advancement in the wave-
number rangevc,uvu<vn . The kinetic energy content of the
considered wave number range can be estimated by the second-
order structure function ~@10,11#! applied to fC5(I
2QN* G)* C̄. The discrete form of the local second-order struc-
ture function in three dimensions, which requires the value offC
at the considered grid point in the computational spacej
5(j1 ,j2 ,j3) and its six next neighbors in the three
computational-space coordinate directions, is given by

F2~j,t !5ifC~j1r ,t !2fC~j,t !i uur uu5h
2 (20)

whereh is the computational-space grid spacing. Note again that
the mapping of the physical space onto the computational space
does not need to be known explicitly.

For an estimate of the relaxation parameterxC we advance Eq.
~19! by one Euler-forward time-step with sizeDt, once using
xC5xC0 and once usingxC50. xC0 is some positive nonvan-
ishing estimate of the parameterxC , the value from the previous
time integration step or some positive constant at timet50 for
instance. The difference of the structure functionF2(j,t
1Dt)uxC502F2(j,t) is an estimate for the integral energy gen-
erated within the time incrementDt in the range of scales with
wave numbersvc,uvu<vn . The differenceF2(j,t1Dt)uxC50

2F2(j,t1Dt)uxC5xC0
estimates how much energy would be dis-

sipated by the relaxation term usingxC5xC0 . Accordingly,xC
can be determined from

xC5xC0

F2~j,t1Dt !uxC502F2~j,t !

F2~j,t1Dt !uxC502F2~j,t1Dt !uxC5xC0

. (21)

In Ref. @4# this procedure is related to the requirement of no-
energy accumulation invc,uvu<vn . By construction, the dy-
namic parameterxC is now a function of space and time. To avoid
the generation of nonresolved scales due to the nonlinear product
of xC and (I 2QN* G)* C̄, xC is smoothed with a second-order
Padéfilter ~@12#! whose cutoff wave numbervc8 is set top/8.
Given a time-step sizeDt, an upper and a lower bound 1/100Dt
<xC<1/Dt is imposed for numerical stability. According to pre-
vious experience, it is sufficient to updatexC every ten time-steps
since it exhibits only small time variation.

Applying now the above operators to Eqs.~1!, ~2!, and~3! we
obtain the differential form of the underlying modeled conserva-
tion laws to be solved
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for i , j 51,2,3. The superscriptď! indicates that the quantities are
computed from the deconvolved solution, e.g.,p̌!5(g21)(E!

2r!ui
!ui

!/2).
f 1(ū) means that the forcing term is computed with the filtered

velocity. Note that we use the same relaxation parameter for the
three momentum equations. To this set of equations the finite vol-
ume method is applied as discretization scheme as in Eq.~19!.

Numerical Method
The approximate deconvolution model~ADM ! was imple-

mented in a CFD code using a cell centered second-order finite
volume method~@13–15#!. The particular form of the convective
terms influences the stability of the numerical scheme. We use the

Fig. 1 Transfer functions, explicit primary filter for an
equidistant mesh, e.g., x or y direction, " " " " approximate in-
verse Q̂N , – – – secondary filter Q̂N"Ĝ, for NÄ5
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skew-symmetric form of the convective term~@16#! instead of the
divergence form. In this case the nonlinear flux term is decom-
posed as

Fl
nonlin5

1

2 S ]ulum

]xm
1um

]ul

]xm
D . (25)

Viscous terms are integrated with a second-order centered scheme
on a shifted control volume, see Ref.@17#.

Time integration is performed by an explicit four-stage Runge-
Kutta scheme which is formally fourth-order accurate for linear
equations but drops to second-order accuracy for a general non-
linear equation. The Courant-Friedrichs-Lewy~CFL! number is
set constant and an adaptive time-stepping procedure based on a
linear stability analysis computes the maximum time-step~@14#!.

Application to Channel Flow
As a test case the compressible channel flow as computed by

Coleman et al.@18# was considered for two reasons. First, the test
case requires a correct near-wall subgrid-scale treatment. Second,
reference data are available in the literature, see Ref.@19#. Three
different simulations have been performed: a direct numerical
simulation~DNS!, a no-model computation or underresolved DNS
on the same mesh as the large-eddy simulation~LES!, and a LES
with the approximate deconvolution model~ADM !. In contrast to
traditional LES where filtering is the result of the projection of the
solution onto the discrete mesh, the filter operator in ADM is
known explicitly and allows for filtering of the DNS data with the
same filter for validation of the LES. The main parameters of the
simulation are summarized in Table 1.Lx , Ly , Lz are the extents
of the integration domain in the streamwise, spanwise, and the
wall-normal coordinate directions, respectively, andnx , ny , nz
are the corresponding numbers of grid points. All four simulations
have the same Reynolds number Re and Mach numberM0 . The
forcing term is adjusted to maintain a constant mass flow. The grid
spacing is constant in the streamwise and spanwise directions and
is stretched with a hyperbolic tangent function in the wall-normal
direction. Except for the DNS, all simulations were initialized
with a laminar profile with a random velocity disturbance super-
imposed in each of the three coordinate directions. The initial
density wasr(t50)51 and the initial temperature was computed
according to the laminar distributionT(t50)5111/3(g
21)PrM0

2u1 max(12(z21)4) whereu1 max is the maximum nondi-
mensional laminar velocity which is equal to 1.5. To save compu-
tational time, the DNS simulation was started from a turbulent
profile obtained with the coarse-grid no-model computation, inter-
polated to the fine DNS mesh. The boundary conditions are peri-
odic in the two homogeneous directions. Isothermal conditions
with wall temperatureTw51 and no-slip conditions are pre-
scribed at the walls.

Results
Starting from the disturbed laminar solution, the computation is

advanced for all large-eddy simulation~LES! cases for 380 time
units tb5tub /H. Transition from laminar to turbulent flow is ob-

served between timetb550 andtb5120. Because certain quanti-
ties, such as the temperature, attain a stationary state only rather
slowly, the statistics presented here are sampled between timetb
5300 totb5380 with a sampling interval of 0.2. The statistics of
the direct numerical simulation~DNS! were obtained after an ini-
tial transient oftb5160 during 140 time units with a sampling
interval of 1. The filtered DNS data were computed from 29 DNS
samples of the DNS evenly spaced between timetb5160 andtb
5300. The number of samples was found to be sufficient for the
computed statistics to be symmetric across the channel halves.
The filtered DNS data are generated by interpolating the DNS to
the LES mesh and subsequent filtering. All statistics presented
here are averaged over wall-parallel planes and over both channel
halves.

Figure 2 gives a qualitative impression of the instantaneous
flow close to the wall. Shown are iso-contours of the wall-normal
vorticity in a near-wall plane. Clearly visible are the near-wall
streak structures. Each simulation represents another realization of
this flow, so that the agreement of these flow snapshots can only
be qualitative.

In Table 2 averaged flow quantities measured at the wall and at
the channel center are given. There are slight differences between
the DNS of Coleman et al. and our DNS results. In our case the
friction-velocity Reynolds number Ret5Reutrw /(ubrb) is smaller
and the centerline velocityuc is larger. Also, a larger centerline
temperatureTc and a smaller centerline densityrc are observed.
These differences may be due to the different numerical method,
but may also be related to differences in the implementation of the
forcing f 1 . For the mean flow variables the agreement between
filtered DNS and DNS is good which confirms that the con-
structed filter leaves the mean flow essentially unchanged even on
a distorted mesh. This requirement leads to moment conditions in
real space on the filter as shown in Ref.@3#. A comparison of

Fig. 2 Contours of instantaneous wall-normal vorticity vz in
„x ,y …-plane at z¿É10, „a… ADM, „b… no-model, „c… DNS; vzÐ0 in
light regions, vzË0 in dark regions

Table 1 Parameters of the numerical simulation

Coleman
et al. @18# DNS

DNS
Filtered ADM No-Model

Lx /H 4p 4p 4p 4p 4p
Ly /H 4p/3 4p/3 4p/3 4p/3 4p/3
Lz /H 2 2 2 2 2
nx 144 288 72 72 72
ny 80 160 40 40 40
nz 119 237 60 60 60
M0 1.5 1.5 - 1.5 1.5
Re 3000 3000 - 3000 3000
ub 1 1 - 1 1
rb 1 1 - 1 1

832 Õ Vol. 124, DECEMBER 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



approximate deconvolution model~ADM ! results with filtered
DNS shows that all quantities of Table 2 are within a reasonable
error margin, e.g., the Reynolds number Ret differs by 4.7% from
the filtered DNS.

We find that the near-wall velocity gradient is slightly overpre-
dicted by the LES, resulting in a larger Reynolds number Ret .
The centerline velocityuc is not affected by the near-wall velocity
gradient since the forcingf 1 is adjusted such that the initial mass-

flux is kept constant throughout the simulation. We find that prob-
ably due to the different initial conditions for the DNS and the
LES, the stationary value of the mass flux differs by about 0.5%.
As shown in Figs. 3 and 4, the mean velocity, density and tem-
perature are predicted accurately. The temperature profile com-
puted with the ADM shows a better agreement with the filtered
DNS than the no-model computation with the DNS. For the ve-
locity profile, a steeper slope near the wall can be seen which is
responsible for the larger Reynolds number Ret with ADM. A
similar overprediction ofut is responsible for the difference of the
mean streamwise velocity profile in wall units between ADM and
filtered DNS in the outer layer as can be seen from the van Driest
transformed profileŝuVD&1 ~Fig. 4~b!! which are computed as

^uVD&15E
0

^u&1A r̄

r̄w
d^u&1. (26)

The von Karman constant is, however, predicted accurately. Inter-
esting are the comparably good results obtained with the no-
model computations. For the velocity fluctuations and Reynolds
stress~Fig. 5 and 6! trends are somewhat more difficult to deter-
mine. Generally, ADM results show a similarly good agreement
with the filtered DNS data as the no-model computation does with
the DNS.

Fig. 3 „a… Mean temperature profile, „b… mean density profile, DNS, d ADM, filtered DNS, s no-model

Fig. 4 Mean velocity profile, „a… linear plot, „b… van Driest transformed logarithmic plot, DNS, d ADM, filtered DNS,
s no-model, – – – 2.5 ln z¿¿5.5

Table 2 Mean flow variables

Coleman
et al. @18# DNS

DNS
Filtered ADM No-Model

Ret 222 216 214 224 217
tw 12.12 11.41 11.35 12.44 11.61
ut 0.0545 0.0529 0.0530 0.0554 0.0534
Dx

1 19 9.4 37 39 38

Dy
1 12 5.6 22 23 23

Dz
1uw

0.1 0.38 1 1 1
uc 1.16 1.18 1.18 1.18 1.19
Tc 1.378 1.39 1.39 1.40 1.41
rc 0.980 0.977 0.977 0.979 0.977
rw 1.355 1.359 1.359 1.353 1.360

Journal of Fluids Engineering DECEMBER 2002, Vol. 124 Õ 833

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Lenormand et al.@19# recently have evaluated several subgrid-
scale~SGS! models for the same channel flow configuration. They
discretized the convective terms in skew-symmetric form with a
fourth-order finite difference scheme whereas the diffusive terms
were discretized with a second-order scheme. Six different
subgrid-scale models were tested on a coarse and a fine mesh
~only these latter results will be considered here!. Different from
our computations, the streamwise extent of the computational do-
main was only of 2p. The number of grid points in the wall-
normal direction was two times larger (nz5119) than in our case
and the spanwise number of grid points was 3/2 times larger. Two
of the tested SGS models are based on the Smagorinsky model,
whereas the four others are based on a newly proposed mixed
scale model, which estimates the subgrid-scale kinetic energy by
means of a test filter and scale-similarity arguments. Linear hy-
bridization with a Bardina-type model~@20,21#! is also consid-
ered, together with the use of a turbulent scale selection function.
A priori tests suggest the use of the hybrid models, and a com-
parison of these models with the DNS data~nonfiltered! of Cole-
man et al.@18# shows results of similar quality as ours. The mean
quantities are predicted accurately except for the temperature
where, as in our case, the LES slightly overpredicts the tempera-
ture in the channel center. Clear trends for the velocity fluctua-
tions and the Reynolds stress are also difficult to determine, but

differences in the peak magnitude and location are visible. We can
conclude that even with a lower order numerical scheme and on a
coarser mesh, ADM gives results of similar quality as other SGS
models on finer meshes with higher-order schemes.

Conclusions
The approximate deconvolution model was formulated to be

used with a second-order finite volume method. The convective
terms are discretized in their skew-symmetric form using a
second-order centered scheme while the viscous terms are com-
puted using a second-order scheme on a shifted control volume.
Time integration is performed with a four-stage Runge-Kutta
method. Compared to other channel flow large-eddy simulation
~LES! with similar numerical discretizations, the mesh used here
is coarser up to a factor of two in the wall-normal direction and of
2/3 in the spanwise direction. The model is based on an approxi-
mate deconvolution of the filtered quantities by a truncated series
expansion of the inverse filter. This approximation is used to com-
pute the nonlinear terms in the Navier-Stokes equations avoiding
the need to compute subgrid-scale terms explicitly, except for a
relaxation term. A relaxation term models the resolved-scale/
nonrepresented-scale interaction by draining energy from the
range of nonresolved represented scalesvc,uvu<vn . The ap-

Fig. 5 Velocity fluctuations, „a… streamwise velocity, „b… spanwise velocity, DNS, d ADM, filtered DNS, s no-model

Fig. 6 „a… Velocity fluctuations in wall-normal direction, „b… Reynolds-stress, DNS, d ADM, filtered DNS, s no-model
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proximate deconvolution part alone of the approximate deconvo-
lution model ~ADM ! is a generalized scale-similarity or tensor
diffusivity model which can both be cast as special cases of ADM
~@2,3#!. It shares the advantages and disadvantages of these mod-
els: on the one hand a good prediction of inhomogeneous turbu-
lent flows, on the other hand an insufficient modeling of nonrep-
resented scales. To cope with the latter, the relaxation term has
been formulated.

Validation of the implemented model was performed for the
case of a supersonic isothermal-wall channel flow. A good agree-
ment between filtered direct numerical simulation~DNS! and LES
was found for the mean flow. For the turbulence statistics, the
no-model results are of the same quality as the ones with ADM.
Since our observations were quite different when comparing no-
model coarse-grid computations and LES with ADM for incom-
pressible channel flow using a spectral method~@3#!, we believe
that the main source of error in the ADM simulations with the
present primary-filter choice does not come from the subgrid-scale
model but rather from the numerical discretization. Similar obser-
vations were made by Mossi@22# and Garnier et al.@23# who also
found that the effect of different subgrid-scale models employed
with the present numerical method was rather small. Filtering of
the no-model computation would probably give results very close
to ADM which suggests a small influence of the model in this
particular case. Considering, however, the already good quality of
the no-model computation, the ADM results can be seen posi-
tively compared to other subgrid-scale models which proved even
to deteriorate results~@22#!. The interplay between the numerical
discretization and the subgrid-scale model has not been investi-
gated further in the frame of this work and we refer to Ref.@16#
for an analysis of the skew-symmetric form of the convective
fluxes and to Stolz et al.@24# for an analysis of the effect of the
discretization order on ADM.

The good results of the no-model computations can be attrib-
uted to the particular form of the truncation error induced by the
skew-symmetric formulation~@16#! of the convective fluxes and to
the relatively simple channel flow configuration considered here.
No-model coarse-grid computations with the divergence form of
the convective terms were found to be unstable for the channel
flow—ADM remained stable but the results were slightly less
accurate. No-model computations of more complex flows such as
shock-turbulence interaction were found to be unstable. In this
case the regularizing effect of the skew-symmetric form is insuf-
ficient and the benefit of ADM, providing a unified modeling of
turbulent and nonturbulent subgrid scales~shocks! ~@4#!, should be
more clearly visible.
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Large-Eddy Simulation on
Curvilinear Grids Using Compact
Differencing and Filtering
Schemes
This work investigates the application of a high-order finite difference method for com-
pressible large-eddy simulations on stretched, curvilinear and dynamic meshes. The
solver utilizes 4th and 6th-order compact-differencing schemes for the spatial discretiza-
tion, coupled with both explicit and implicit time-marching methods. Up to 10th order,
Pade-type low-pass spatial filter operators are also incorporated to eliminate the spurious
high-frequency modes which inevitably arise due to the lack of inherent dissipation in the
spatial scheme. The solution procedure is evaluated for the case of decaying compressible
isotropic turbulence and turbulent channel flow. The compact/filtering approach is found
to be superior to standard second and fourth-order centered, as well as third-order
upwind-biased approximations. For the case of isotropic turbulence, better results are
obtained with the compact/filtering method (without an added subgrid-scale model) than
with the constant-coefficient and dynamic Smagorinsky models. This is attributed to the
fact that the SGS models, unlike the optimized low-pass filter, exert dissipation over a
wide range of wave numbers including on some of the resolved scales. For channel flow
simulations on coarse meshes, the compact/filtering and dynamic models provide similar
results, with no clear advantage achieved by incorporating the SGS model. However,
additional computations at higher Reynolds numbers must be considered in order to
further evaluate this issue. The accuracy and efficiency of the implicit time-marching
method relative to the explicit approach are also evaluated. It is shown that a second-
order iterative implicit scheme represents an effective choice for large-eddy simulation of
compressible wall-bounded flows.@DOI: 10.1115/1.1517564#

1 Introduction
Extension of large-eddy simulation~LES! to increasingly com-

plex flows of engineering interest is currently the focus of signifi-
cant research effort,@1–3#. This trend is motivated in part by the
need to provide a more realistic characterization of the complex
unsteady and separated flows encountered in areas such as flow
control, aeroacoustics and fluid/structure interaction. Several con-
ceptual difficulties still remain unresolved in the formulation and
application of LES to nonhomogeneous flows~see, for instance,
Ghosal @4# and references therein!. Nonetheless, significant
progress has been achieved in recent years due to advances in
computational power, numerical algorithms and subgrid-scale
~SGS! models. The uncertainties associated with subgrid model-
ing, numerical discretization errors and their interaction consti-
tute, among others, important issues that are not fully understood.
Analysis of the impact of spatial discretization errors on LES,
@4,5#, combined with the impetus to tackle more relevant configu-
rations, establishes the need to develop high-order algorithms ap-
plicable to general geometries.

Due to their ‘‘spectral-like’’ resolution and ease of extension to
multiple disciplines, high-order compact schemes,@6#, represent
an attractive choice for reducing dispersion, anisotropy and dissi-
pation errors associated with low-order spatial discretizations. Un-
til recently, these schemes have mostly been used in conjunction
with explicit time-integration methods to address complex flow
physics on Cartesian-type grids. Recent work,@7–12#, has ex-
tended the use of compact algorithms to more practical applica-

tions. Particular attention has been focused on enhanced high-
order ~up to 10th order! low-pass spatial filtering techniques
which are required to enforce numerical stability on nonuniform
grids, @8#. Another important aspect is the coupling of the high-
order discretization with a subiterative implicit time-advancement
method which overcomes the severe time-step restriction of ex-
plicit schemes for wall-bounded flows. These new techniques
have been incorporated into an existing finite difference code,
@10#, which solves the three-dimensional compressible Navier-
Stokes equations in curvilinear grids. Extensive evaluation of the
high-order approach has been previously presented for unsteady
flows, @7#, dynamic meshes,@11#, and acoustic benchmark cases,
@12#.

The main objective of the present work is to evaluate the high-
order compact/filtering methodology in the context of large-eddy
simulation. To this end, canonical LES test cases are considered
including the decay of compressible isotropic turbulence and tur-
bulent channel flow. Particular emphasis is placed on the follow-
ing aspects:

1. comparison of the high-order scheme with standard lower-
order spatial discretizations,

2. evaluation of the accuracy and efficiency of the implicit it-
erative time-integration scheme relative to a Runge-Kutta
explicit procedure,

3. effect of the required low-pass filter on turbulence dissipa-
tion,

4. proper treatment of coordinate transformation metric expres-
sions to maintain high fidelity on general three-dimensional
curvilinear and deforming meshes, and

5. comparison of solutions obtained with the compact/filtering
method for the unfiltered Navier-Stokes equations~i.e., with-
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out an explicitly added SGS model! with results based on
the standard LES approach with Smagorinsky-type models.

2 Governing Equations
In order to develop a procedure suitable for nonlinear fluid

dynamic, aeroacoustic, and aeroelastic applications over complex
geometries, the unfiltered Navier-Stokes equations are selected
and are cast in strong conservative form after introducing a time-
dependent curvilinear coordinate transformation (x,y,z,t)
→(j,h,z,t), @13,14#. In vector notation, and in terms of nondi-
mensional variables, these equations are

]

]t S U

J D1
]F̂

]j
1

]Ĝ

]h
1

]Ĥ

]z
5

1

Re
F ]F̂v

]j
1

]Ĝv

]h
1

]Ĝv

]z
G . (1)

Here U5$r,ru,rv,rw,rE% denotes the solution vector andJ
5](j,h,z,t)/](x,y,z,t) is the transformation Jacobian. The in-
viscid fluxesF̂, Ĝ, andĤ are

F̂5F rÛ

ruÛ1 ĵxp

rvÛ1 ĵyp

rwÛ1 ĵzp

~rE1p!Û2 ĵ tp

G (2)

Ĝ5F rV̂

ruV̂1ĥxp

rvV̂1ĥyp

rwV̂1ĥzp

~rE1p!V̂2ĥ tp

G (3)

Ĥ5F rŴ

ruŴ1 ẑxp

rvŴ1 ẑyp

rwŴ1 ẑzp

~rE1p!Ŵ2 ẑ tp

G (4)

where

Û5 ĵ t1 ĵxu1 ĵyv1 ĵzw (5)

V̂5ĥ t1ĥxu1ĥyv1ĥzw (6)

Ŵ5 ẑ t1 ẑxu1 ẑyv1 ẑzw (7)

E5
T

~g21!Mr
2 1

1

2
~u21v21w2!. (8)

Here, ĵx5J21]j/]x with similar definitions for the other metric
quantities. The viscous fluxes,F̂v , Ĝv , andĤv can be found, for
instance, in Ref.@15#. In the expressions above,u, v, w are the
Cartesian velocity components,r the density,p the pressure, and
T the temperature. The perfect gas relationshipp5rT/gMr

2 is
also assumed. All flow variables have been normalized by their
respective reference values except for pressure which has been
nondimensionalized byr rur

2.
In the standard compressible LES approach, the above equa-

tions are filtered employing a grid filter function and introducing
Favre-averaged variables,@16#. The resulting equations are similar
to those above but include additional subgrid-scale stress and heat
flux terms which must be modeled. For standard LES, the Sma-
gorinsky @17# and Dynamic Smagorinsky@18,19# models have
been incorporated into the solver as previously described in Ref.
@20#.

3 Numerical Methodology

3.1 Spatial Discretization. A finite difference approach is
employed to discretize the governing equations, and all discrete
quantities are therefore assumed to be pointwise in nature. This
choice is motivated by the relative ease of formal extension to
higher-order accuracy.

For any scalar quantity,f, such as a metric, flux component, or
flow variable, the spatial derivativef8 is obtained along a coor-
dinate line in the transformed plane by solving the tridiagonal
system:

af i 218 1f i81af i 118 5b
f i 122f i 22

4
1a

f i 112f i 21

2
(9)

where a, a, and b determine the spatial properties of the algo-
rithm. The formula yields the compact five-point, sixth-orderC6,
and three-point fourth-orderC4 schemes witha5

1
3, a5

14
9 , b

5
1
9, anda5

1
4, a5

3
2, b50, respectively. Equation~9! also incor-

porates the standard explicit fourth-orderE4 (a50, a54/3 and
b521/3) and second-orderE2 (a50,a51,b50) schemes. At
boundary points 1, 2,IL 21 and IL, higher-order one-sided for-
mulas are utilized which retain the tridiagonal form of the equa-
tion set. These are described in more detail in Refs.@7# and@10#.

The derivatives of the inviscid fluxes are obtained by forming
the fluxes at the nodes and differentiating each component with
the above formulas. Viscous terms are obtained by first computing
derivatives of the primitive variables. Subsequently, the compo-
nents of the viscous flux are then constructed at each node and
differentiated by a second application of the same scheme. Al-
though this approach is not as accurate as that in which a Pade-
type scheme is employed directly for the second derivative, it is
significantly cheaper to implement in curvilinear coordinates. As
previously demonstrated in Ref.@7#, successive differentiation
yields an accurate and stable method in conjunction with the
added low-pass filter procedure described in Section 3.2.

In Fig. 1, the dispersion-error characteristics for several
schemes are shown in the context of the one-dimensional linear
advection equation. Herew(52pkDx/L) and w8 denote the
scaled and modified scaled wave numbers, respectively. TheC6
method exhibits the least dispersion error whereas theE2 scheme
has significant phase-speed errors over a wide range of wave num-
bers. Note that the three-pointC4 scheme is superior to the five-
point E4 and even to the seven-point explicit sixth-order scheme
(E6). Although not shown, the third-order upwind-biased
MUSCL scheme,@21#, exhibits similar dispersion properties as
E4, but has a dominant dissipation error. Based on the resolving
power of the various schemes displayed in Fig. 1, it is expected
that the chosen numerical procedure will have a significant impact
on LES as the grid is coarsened relative to a DNS. For instance, in

Fig. 1 Dispersion-error characteristics of various spatial dis-
cretizations for one-dimensional advection equation
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finite difference LES employing a dynamic SGS model, a test
filter operation is typically performed with a test-filter width cor-
responding tow5p/2 where significant errors are present for the
low-order approaches.

3.2 Low-Pass Spatial Filtering Scheme. Compact differ-
ence discretizations, like other centered schemes, are nondissipa-
tive and therefore susceptible to numerical instabilities due to the
unrestricted growth of high-frequency modes. These difficulties
originate from several sources including mesh nonuniformity, ap-
proximate boundary conditions and nonlinear flow features. In
LES ~where the physical viscous dissipation at the Kolmogorov
scale is not represented!, the use of a nondissipative spatial
scheme typically leads to the pileup of energy at the high-wave
numbers of the mesh and ultimately to numerical instability.

In order to extend the compact discretization approach to prac-
tical applications, a high-order low-pass spatial filtering tech-
nique,@7,9#, is incorporated. This low-pass filter provides dissipa-
tion at the high modified wave numbersonly where the spatial
discretization already exhibits significant dispersion errors. If a
typical component of the solution vector is denoted byf, filtered
values at interior pointsf̂ in transformed space satisfy

a ff̂ i 211f̂ i1a ff̂ i 115(
n50

N
an

2
~f i 1n1f i 2n!. (10)

Equation~10! is based on templates proposed in Refs.@6# and@22#
and with proper choice of coefficients, provides a 2Nth-order for-
mula on a 2N11 point stencil. The N11 coefficients,
a0 ,a1 , . . .aN , are derived in terms ofa f with Taylor and
Fourier-series analyses and are given in Refs.@8# and @10#.

The dissipation characteristics of the filter operator as function
of scaled wave number are given by the corresponding spectral
function ~denoted asSF!. It can be shown@8# that

SF~w!5

(
n50

N

an cos~nw!

112a f cos~w!
(11)

For proper behavior ofSF, the adjustable parametera f must be in
the range20.5,a f,0.5, with higher values ofa f corresponding
to a less dissipative filter. Also, fora f50.0 ~spatially! explicit
filter formulas,@23#, are obtained. On uniform meshes, these sym-
metric filters are nondispersive~i.e., SF is real!, do not amplify
any waves (SF<1), preserve constant functions (SF(0)51.0),
and completely eliminate the odd-even mode (SF(p)50.0).

The spectral response of the second, sixth, and tenth-order im-
plicit (a f50.49) and explicit (a f50) filters are shown in Fig. 2.
The optimized filters exhibit fairly sharp cutoff characteristics for
various orders of accuracy. By contrast, the explicit filters display
significant degradation of the spectral response as the order of
accuracy is reduced. The dissipation error inherent in a third-order

upwind-biased,@21#, approximation of the first derivative is also
shown in Fig. 2 for the purpose of comparison. Unlike the high-
order low-pass filter, the dissipation of the upwind-biased scheme
does not exhibit a sharp cutoff but instead applies over a wide
range of wave numbers. This is also the case for standard numeri-
cal damping approaches~e.g., Refs.@24# and @25#!, unless the
damping term is derived based on spectral considerations as de-
scribed in Ref.@26#.

In this work, the filter operator is applied to the conserved
variables along each transformed coordinate direction and after
each time step. For the near-boundary points, the filtering strate-
gies described in Refs.@7#, @8# are employed. The impact of fil-
tering on the accuracy and stability of the high-order approach has
been investigated in Refs.@7#, @8#, and @12# for several applica-
tions including nonuniform grids, approximate boundary treat-
ments and nonlinear governing equations.

3.3 Evaluation of Spatial and Temporal Coordinate Trans-
formation Metrics. The extension of high-order schemes to
curvilinear and deforming meshes requires a careful evaluation of
the spatial and temporal metric expressions arising from the coor-
dinate transformation. Failure to enforce metric cancellation and
freestream preservation in the finite-difference discretization of
the strong-conservation form of the governing equations can cata-
strophically degrade the fidelity of higher-order approaches,
@7,8,12#.

In deriving the strong-conservation flow equations, the follow-
ing metric identities have been implicitly invoked:

I 15~ ĵx!j1~ ĥx!h1~ ẑx!z50 (12)

I 25~ ĵy!j1~ ĥy!h1~ ẑy!z50 (13)

I 35~ ĵz!j1~ ĥz!h1~ ẑz!z50 (14)

I 45~1/J!t1~ ĵ t!j1~ ĥ t!h1~ ẑ t!z50 (15)

where subscripts denote partial derivatives. The first three identi-
ties constitute a differential statement of surface conservation for a
closed cell. The last metric identity (I 4) is referred to in the lit-
erature as the geometric conservation law~GCL!, @27#, and be-
comes important in the case of dynamic meshes. In a finite-
difference discretization, these identities must be also satisfied
numerically in order to ensure freestream preservation.

To numerically enforce identitiesI 1 , I 2 , and I 3 ~Eqs. ~12!–
~14!!, the transformation metrics are evaluated in the manner de-
scribed in Refs.@8#, @12#. This approach adopts the formulation
developed in the context of lower-order methods,@27#, in which
the metric relation, for example,

ĵx5yhzz2yzzh (16)

is evaluated by considering its analytically equivalent ‘‘conserva-
tive’’ form:

ĵx5~yhz!z2~yzz!h . (17)

Similar expressions are employed for the remaining metric terms.
As demonstrated in Refs.@8# and @12#, freestream preservation
and improved accuracy is achieved on general three-dimensional
meshes when the transformation metrics are cast in the form of
Eq. ~17!, and the derivatives are evaluated with the same high-
order formulas employed for the fluxes.

In order to satisfy the GCL identity of Eq.~15!, the time-
derivative term in Eq.~1! is split using chain-rule differentiation
as follows:

~U/J!t5~1/J!Ut1U~1/J!t . (18)

The first term involves the inverse JacobianJ21, which is evalu-
ated in a standard fashion using the instantaneous values of the
grid coordinates. The second term, which includes the time-
derivative of the Jacobian, requires special treatment. Rather than

Fig. 2 Spectral response of interior low-pass spatial filters
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attempting to compute the time-derivative ofJ21 directly from
the grid coordinates at various time levels~either analytically or
numerically!, we simply invoke Eq.~15! to evaluate (1/J)t , i.e.,

~1/J!t52@~j t /J!j1~h t /J!h1~z t /J!z# (19)

where

j t /J52@xt~jx /J!1yt~jy /J!1zt~jz /J!#

h t /J52@xt~hx /J!1yt~hy /J!1zt~hz /J!#

z t /J52@xt~zx /J!1yt~zy /J!1zt~zz /J!#. (20)

As shown in Ref.@11#, this strategy ensures freestream preser-
vation and high fidelity on rapidly deforming meshes for either
analytic or numerically evaluated grid speed terms.

3.4 Time Integration. The compact differencing scheme
has been coupled with both explicit and implicit time-integration
methods. The classical fourth-order four-stage Runge-Kutta
scheme (RK4), implemented in low-storage form, is utilized pri-
marily for wave propagation problems. For the highly stretched
meshes employed in LES of wall-bounded flows, the stability con-
straint of explicit time-marching methods is too restrictive and the
use of an implicit approach becomes necessary. For this purpose,
an implicit approximately factored scheme,@28#, is incorporated
and augmented through the use of Newton-like subiterations. In
delta form, and for second-order temporal accuracy~denoted as
BW2), the scheme may be written as

FJ21p11
1f iDtdj
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1

Re
Ĥv
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where ]F̂/]U, etc, are flux Jacobians,d represents the spatial
difference operator, andDU5Up112Up. The method combines
the approximate factorization procedure of Ref.@28# with the di-
agonalized simplification of Ref.@29#. Note that while the deriva-
tives of the flux Jacobians have been obtained to second-order
accuracy~denoted with the superscript~2!!, those on the right-
hand side, i.e., in the residual, are evaluated with the compact-
difference based higher-order method. Nonlinear artificial dissipa-
tion terms, @24,25#, not explicitly shown in Eq.~21!, are also
appended to the implicit operator to enhance stability. In order to
reduce errors associated with these simplifications, a subiteration
strategy is employed. Thus, for the first subiteration,p51, Up

5Un and asp→`, Up→Un11. Typically, three subiterations are
applied per time-step. By changing the number of time levels
employed to evaluate the time-derivative term appearing in the
RHS of Eq. ~21!, first (BW1) and third-order (BW3) accurate
forms of the implicit algorithm can be constructed. As demon-
strated in Refs.@11# and @30#, as well as in the examples below,
second-order temporal accuracy provides adequate accuracy.

4 Results
The previous computational methodology has been demon-

strated for a number of DNS/LES applications. These include:

unsteady vortical flows,@7#, forced transitional plane walljet,@31#,
synthetic jet actuators,@32#, boundary layer transition over a flex-
ible panel,@33#, decay of compressible isotropic turbulence, tur-
bulent channel flow, three-dimensional flow past a circular cylin-
der, @20#, supersonic turbulent flat-plate boundary layer,@34#, and
shock/turbulent boundary layer interactions,@35,36#. In this paper,
only the case of decaying isotropic turbulence and turbulent chan-
nel flow are presented.

The computational results to be described below have been ob-
tained employing several numerical approaches. The centered spa-
tial schemes (E2,E4,C4,C6) have been defined in Section 3.1.
The low-pass filters employed~Section 3.2! are designated by
appending the filter order to the scheme. For instance,C4F8 de-
notes the fourth-order compact scheme combined with an 8th-
order filter. The second-order algorithm (E2) incorporates, in-
stead of a low-pass filter, the standard fourth-order~Jameson-type!
scalar dissipation,@24,25#. For the purpose of comparison, a third-
order MUSCL-based upwind-biased Roe scheme,@21,37#, is also
considered. Unless otherwise noted, results are obtained by solv-
ing the unfiltered Navier-Stokes equations~i.e., without a subgrid-
scale model!. In this situation, for an LES grid, dissipation is
mainly provided by the properties of the numerical scheme~i.e.,
damping terms, low-pass filter or the inherent dissipation of the
upwind-biased approach!. It should be noted that the compact/
filtering scheme without an SGS model bears some similarities
with other regularization approaches, including MILES,@38#,
‘‘Truncated Navier-Stokes Dynamics,’’@39#, and the approximate
deconvolution method,@40#.

4.1 Decay of Compressible Isotropic Turbulence. The
first test case considered is the decay of compressible isotropic
turbulence. This flow has been used to investigate compressible
formulations of SGS models for large-eddy simulations by Moin
et al. @19# and Spyropoulos and Blaisdell@41#, among others. Al-
though this case represents a very simple example of turbulent
flow, it allows for an evaluation of the dissipation characteristics
of the numerical schemes in the absence of mean flow inhomoge-
neity.

The isotropic turbulence simulations correspond to the com-
pressible low-Reynolds number conditions denoted as Case 6 in
Spyropoulos and Blaisdell@41#. The initial three-dimensional tur-
bulence spectrum is defined as

E3D}k4 exp@22~k/kp!2#, (22)

wherek is the magnitude of the wave number vector, andkp54 is
the wave number at the peak in the spectrum. Root-mean-square
~RMS! levels of the velocity, density, and temperature are estab-
lished by adjusting the proportionality constant in the spectra. The
velocity fluctuations are specified so that the initial turbulent
Mach numberMt50.4, defined as the ratio of the RMS magnitude
of the fluctuating velocity to the mean speed of sound. In addition

Fig. 3 Effect of spatial discretization on time history of TKE
for decaying isotropic turbulence on 32 3 mesh
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to the turbulent Mach number, the velocity field is parametrized
by the fraction of energy in the dilatational part of the velocity,x
~see Ref.@41#!. In the current simulations, initial values are given
by x50.2,r rms8 2/^r&250.032, andTrms8 2/^T&250.005. The turbu-
lent Reynolds number is equal to 2157.0.

The computational domain of size (2p32p32p) in physical
space is discretized with a mesh of uniformly distributed grid
points. Periodic conditions are enforced at all domain boundaries,
and are implemented numerically employing an overlap of five
grid points in each coordinate direction in order to facilitate the
application of the implicit time-marching procedure. Three levels
of numerical resolution (323, 643, and 1283) are used in the simu-
lations. Unless noted otherwise, the solutions are obtained em-
ploying the explicit (RK4) time-marching algorithm and the
sixth-order compact scheme (C6) combined with a 10th-order
low-pass filter (F10,a f50.49). The time-step for the 323 and 643

grid computations is specified asDt50.05 which yields an initial
maximum CFL number of approximately 0.8 on the coarse mesh.
This Dt corresponds to approximately 250 time-steps per eddy
turnover timeto , which is defined as the ratio ofK to the dissi-
pation rate based on the initial field. On the 1283 mesh, aDt
50.01 is specified.

4.1.1 Effect of Spatial Discretization.The time history of the
resolved~volume-averaged! turbulent kinetic energyK5^r(u82

1v821w82)& is shown in Fig. 3 for the 323 mesh and for several
spatial discretizations without the inclusion of any SGS model.
Spectral DNS results from Spyropoulos and Blaisdell@41# are also

shown for the purpose of comparison. The Pade-type schemes
(C6F10,C4F8) are observed to be in good agreement with the
DNS data. Reducing the fidelity of the spatial discretization just to
a fourth-order explicit method (E4) combined with and explicit
~i.e.,a f50.0) eighth-order filter produces excessive dissipation of
turbulent kinetic energy. This error becomes more pronounced for
the second-order and third-order upwind-biased algorithms. The
superior behavior of the compact schemes relative to the lower
order or explicit approaches is also demonstrated in Fig. 4 which
displays the time history of the density fluctuations.

The origin of the excessive dissipation encountered with the
lower-order approximations can be clarified by examining the in-
stantaneous three-dimensional energy spectra, shown in Fig. 5, at
t/to50.2985. The highest wave number represented on this 323

mesh corresponds tokc516. It is observed that the lower-fidelity
schemes damp the high wave number content of the energy. For
the upwind-biased andE2 schemes, this occurs fork.4.5 (w
.0.28p) which corresponds approximately to PPW,7. Since
significant energy is still present above this wave number, a more
rapid decay of turbulent kinetic energy ensues~Fig. 3!. The spec-
tra for the compact/filtering schemes display good agreement with
the DNS results up tok'12 (w'0.75p). Also, the spectra for the
DNS and compact schemes display a limited inertial subrange
(E(k)}k25/3), not apparent in the low-order spatial discretiza-
tions.

Figures 6 through 9 show a comparison of theC6F10, E2, and
upwind-biased schemes for the 643 and 1283 grids. Differences
are still observed between the high-order and low-order discreti-
zations on the 643 mesh~Fig. 6!. The corresponding spectra for
the E2 and upwind schemes~Fig. 8! begin to depart noticeably
from the DNS data fork.8 (w'0.25, PPW'8). On the finest
mesh~Fig. 9!, all schemes generate essentially the same results.

Fig. 4 Effect of spatial discretization on time history of density
fluctuations for decaying isotropic turbulence on 32 3 mesh

Fig. 5 Effect of spatial discretization on instantaneous three-
dimensional energy spectra at t ÕtoÄ0.2985 „323 mesh …

Fig. 6 Effect of spatial discretization on time history of TKE
for decaying isotropic turbulence on 64 3 mesh

Fig. 7 Effect of spatial discretization on time history of density
fluctuations for decaying isotropic turbulence on 64 3 mesh
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Based on the above characteristics of the spatial discretizations
for this turbulence decay problem, it is clear that the high-order
differencing approach has an advantage over standard low-order
schemes. In order for the low-order method to reach the same
level of accuracy as the compact/filtering scheme, a grid between
two to four times finer must be used. This translates in an increase
in the total number of grid points by a factor of 8 to 64. In terms
of CPU time required per grid point per time-step, the high-order
solver is more expensive than the second-order and upwind pro-
cedures by a factor of only 2.0 and 1.6, respectively. Therefore, a
significant net gain in efficiency is achieved with the high-fidelity
formulation.

An investigation of the effect of the low-pass filter order on the
decay of isotropic turbulence was also performed. This was done
in order to provide some guidance in the selection of the filter
operator needed to maintain acceptable accuracy. In principle, for
proper resolution of the low wave numbers, the filter order should
be equal or greater than the corresponding order of accuracy of
the spatial discretization. Computations were performed using the
6th-order compact scheme in combination with various filter op-
erators ranging from second to tenth-order accuracy. The corre-
sponding decay of turbulent kinetic energy obtained on the 323

mesh is shown in Fig. 10. The results forF6, F8, andF10 are in
good agreement with each other and with the DNS solution. Ex-
cessive dissipation starts to become apparent forF4, and is quite
significant for F2 at which point the compact/filtering solution
provides no improved accuracy relative to the second-order ap-
proach~Fig. 3!.

4.1.2 Effect of Time-Marching Scheme.Although the im-
plicit time-integration method is not needed for the efficient com-
putation of isotropic turbulence decay on a uniform mesh, this test
case was selected for validation and examination of accuracy is-
sues of the implicit subiterative approach. For this purpose, com-
putations of isotropic turbulence were performed on the 323 mesh
using both the first and second-order versions of the implicit al-
gorithm~denoted asBW1 andBW2, respectively!. The number of
subiterations was set equal to two for both implicit schemes, and
the time step previously employed with the explicit (RK4) solver
was retained. The corresponding time histories of the turbulent
kinetic energy and density fluctuations are shown in Figs. 11 and
12, respectively. Results obtained with the first-order implicit
method (BW1) are found to be extremely dissipative which ren-
ders the scheme unsuitable for LES. On the other hand, going to
the second-order method (BW2) produces results which are in
good agreement with the previous explicit calculation. Reasonable
agreement was also found between theBW2 andRK4 results in
terms of the energy spectra~not shown! for wavenumbers up to
k'10. This value ofk is very close to the wave number beyond
which the spatial discretization itself ceases to be sufficiently ac-
curate ~Section 4.1.1!. Although the isotropic turbulence decay
was not computed employing the third-order implicit method
(BW3), preliminary calculations of benchmark acoustic prob-
lems, @30#, indicate only a marginal gain in accuracy relative to
the second-order scheme~accompanied also by a loss of robust-
ness!. The second-order subiterative approach therefore appears to
be a good compromise in terms of accuracy and stability.

Fig. 8 Effect of spatial discretization on instantaneous three-
dimensional energy spectra at t ÕtoÄ0.2985 „643 mesh …

Fig. 9 Effect of spatial discretization on time history of TKE
for decaying isotropic turbulence on 128 3 mesh

Fig. 10 Effect of low-pass filter order on time history of TKE
for decaying isotropic turbulence „323 mesh …

Fig. 11 Effect of time-integration scheme on TKE for decaying
isotropic turbulence „323 mesh, C6F10…
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4.1.3 Turbulence Decay on a Deforming Curvilinear Mesh
Since one of the objectives of this work is to develop a high-order
computational approach suitable for DNS and LES on three-
dimensional curvilinear and dynamic meshes, the decay of isotro-
pic turbulence was also computed on a deforming curvilinear grid
~Fig. 13!. This arbitrary dynamic mesh was generated analytically
by deforming the~x, y! coordinates of the original Cartesian 323

grid according to the expressions

xi , j ,k~t!5xmin1DxoF ~ i 21!1Axf sin~2pvt!

3sin
nxyp~ j 21!Dyo

Ly
sin

nxzp~k21!Dzo

Lz
G (23)

yi , j ,k~t!5ymin1DyoF ~ j 21!1Ayf sin~2pvt!

3sin
nyxp~ i 21!Dxo

Lx
sin

nyzp~k21!Dzo

Lz
G

i 51 . . . IL ; j 51 . . .JL; k51 . . .KL

Dxo5
Lx

IL 21
; Dyo5

Ly

JL21
; Dzo5

Lz

KL21

with the specified parametersIL 5JL5KL533, Ax5Ay51.5,
Lx5Ly5Lz52p andnxy5nyz5 . . . 56. A blending factorf ~de-
fined in terms of the product of three squared-sine functions! is
chosen to limit the deformation to the interior of the domain. In
addition, att50, the grid is undeformed and the previous initial
turbulent flow conditions are specified. The frequency of oscilla-
tion was set tov50.266 which gave approximately two cycles of
the grid oscillation during the time of the computation. At the
phase of maximum distortion~shown in Fig. 13! significant skew-

ing of the grid is apparent. The grid speeds (xt ,yt) were obtained
analytically by direct differentiation of Eq.~23!. The maximum
value of the grid speed was approximately 0.2a` . The spatial and
temporal transformation metric expressions were evaluated ac-
cording to the procedure described in Section 3.3. The time his-
tory of the turbulent kinetic energy computed with theC6F10
scheme on the dynamic mesh is displayed in Fig. 14. The high-
order compact/filtering procedure is shown to retain its fidelity
despite the significant imposed mesh distortions.

4.1.4 Comparison of Compact/Filtering Approach With Stan-
dard SGS Models. In this section, we compare the accuracy of
the present high-order low-pass filtering approach for the unfil-
tered Navier-Stokes equations with the standard LES method em-
ploying the Smagorinsky~with Cs50.092) and the dynamic Sma-
gorinsky subgrid-scale models. In the dynamic approach, both a
trapezoidal and a seven-point least-square,@41# test filters with
filter width w5p/2 were implemented. However, only results
with the least-square filter are included since it provided slightly
improved turbulence dissipation characteristics.

The time histories of turbulent kinetic energy obtained with the
various SGS approaches on the 323 grid are shown in Fig. 15.
First, it should be noted that all models were found to be numeri-
cally unstable without the inclusion of the low-pass filter operator.
Therefore, in all computations, the 10th-order Pade-type filter was
used in conjunction with the baselineC6 scheme. The decay ofK
is seen to be quite similar for the Smagorinsky and dynamic mod-
els, and both display excessive dissipation relative to the DNS. It
is also apparent that for this case better results are obtained with
the compact/filtering approach for the unfiltered equations~i.e.,
without the inclusion of an SGS model!. A partial explanation of

Fig. 12 Effect of time-integration scheme on density fluctua-
tions for decaying isotropic turbulence „323 mesh, C6F10…

Fig. 13 Deforming curvilinear mesh for isotropic turbulence
simulation

Fig. 14 Time history of TKE for decaying isotropic turbulence
on deforming 32 3 mesh „C6F10– RK4 scheme …

Fig. 15 Time history of TKE for decaying isotropic turbulence
using several SGS models „323 mesh, C6F10– RK4 scheme …
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this behavior can be offered from the comparison of the energy
spectra, shown in Fig. 16. Unlike the high-order filter~which acts
only at high wave number!, the standard eddy-viscosity SGS mod-
els dissipate energy over a wide range of wavenumbers including
the resolved scales. This problem emanates from the inability of
the model to effectively discriminate between resolved and unre-
solved scales~see, for instance, Ref.@42#!, and cannot be cor-
rected by simply adjusting the constant in the model.

4.2 Turbulent Channel Flow. The next case considered is
that of turbulent channel flow which has been commonly em-
ployed in LES studies of wall-bounded flows~e.g., Refs.@43#,
@44#!. The Reynolds number based on channel height, Reh
56600 (Ret'180), corresponds to the incompressible DNS of
Kim et al. @45#. Since the present code solves the compressible
form of the Navier-Stokes equations, a low Mach number,M`
50.1, is specified.

A summary of the computational grids employed is provided in
Table 1. In all case the streamwise extent of the computational
domain is set toLx /h52p, whereas two different spanwise
lengthsLz /h5p, 2p/3 are considered. The mesh spacing is con-
stant in thex and z directions, and geometrically stretched iny.
For Grid M in Table 1,Dx1547.1, Dywall

1 50.45, Dymax
1 525.8

andDz1523.4. The grid stretching factor in the normal direction
is equal to 1.15.

Periodic boundary conditions are applied for all variables in the
streamwise and spanwise directions. At the channel walls, the no
slip condition is satisfied, along with a constant surface tempera-
ture, and a vanishing normal pressure gradient. Due to the peri-
odic streamwise boundary condition, the flow cannot sustain a
streamwise pressure gradient. Therefore, an artificial source term
is introduced,@20#, in order to provide a driving mechanism which
mimics an imposed constant pressure gradient.

Channel flow computations were performed using the following
spatial discretizations:C6F10 scheme witha f50.49, the stan-

dard second-orderE2 scheme with damping, as well as a third-
order upwind-biased approach. No SGS model was incorporated,
unless otherwise noted. The iterative implicit second-order solver
(BW2) was employed with a baseline nondimensional time-step
Dt50.001 and three subiterations. In terms of wall units, this
time-step corresponds toDt15Dtut

2/n50.025 which should be
sufficiently accurate based on the study of Choi and Moin@46#.

4.2.1 Effect of Grid Resolution and Spatial Discretization
The mean streamwise velocity profiles obtained on various levels
of resolution with the compact/filteringC6F10 scheme are dis-
play in Fig. 17, and compared with the DNS data of Ref.@45#. The
computed results are observed to approach the DNS solution as
the mesh is refined. In particular, good agreement is observed for
the medium and fine meshes~Grids M, M1, and F, Table 1!. The
effect of grid resolution on the velocity fluctuations is shown in
Fig. 18. Again, a consistent trend is observed with grid refinement.
However, even on the finest mesh considered, some discrepancies
relative to the DNS are apparent towards the channel centerline.
In retrospect, a smaller value ofDymax

1 should have been specified
through an improved grid-point distribution in the normal direc-
tion. Nonetheless, based on the comparison with the DNS data,
the present compact/filtering approach without the inclusion of an
SGS model seems to provide encouraging results. A representative
computed instantaneous flow structure corresponding to the fine
mesh is shown in Fig. 19 in terms of contours of streamwise
velocity on both a transverse and a longitudinal plane close to the
surface (y158.3). The low-speed streaks typical of wall-bounded
turbulent flows are clearly observed.

A comparison of the channel flow solutions computed on Grid
M1 using several spatial discretizations is given in Figs. 20 and
21. On this level of resolution, the prediction of the mean velocity
profile deteriorates significantly when switching to the lower-
order second and upwind-biased schemes. Unlike theC6F10,
which is in good agreement with the log-law, theE2 and upwind
methods display a profile which resembles more a laminar flow.
Indeed, examination of the spanwise velocity fluctuations~Fig.
21! shows a significant suppression of the turbulence fluctuations
with the lower-fidelity algorithms. Significant improvements are
therefore achieved when employing the high-order compact/
filtering approach. It should be noted, however, that the poor be-
havior of the standard schemes may be attributable in part to the
low Mach number (M`50.1) specified for these test cases, and
could become less severe as the Mach number is increased.

Fig. 16 Instantaneous three-dimensional energy spectra at
t ÕtoÄ0.2985 for several SGS models „323 mesh, C6F10– RK4
scheme …

Table 1 Grid designation for turbulent channel flow simula-
tions

Grid Size Lz /h

C 31361331 p
C1 31361331 2p/3
M 61361361 p
M1 61361361 2p/3
F 91391391 p

Fig. 17 Effect of spatial resolution on computed mean stream-
wise velocity profile for turbulent channel flow „C6F10– BW2
scheme …
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4.2.2 Comparison of Compact/Filtering Approach With Stan-
dard SGS Models. The question of whether or not the inclusion
of a standard SGS model could improve the computed channel
flow results on an LES grid with limited resolution was also ad-
dressed. To this end, computations were performed,@20#, for a
slightly higher Reynolds number (Reh57700) on Grid M employ-
ing the constant-coefficient and dynamic Smagorinsky models, as
well as the~no-model! compact/filtering approach. Calculations
with the SGS models were obtained using the same spatial dis-
cretization (C6F10), and the inclusion of the low-pass filter was
required in order to maintain numerical stability. Figure 22 dis-
plays a comparison of the mean velocity profiles. Although the
dynamic model provides a small improvement over the Smagor-

insky model, the compact/filtering results are still in slightly better
agreement with the DNS data. A plot of the normal velocity fluc-
tuations ~Fig. 23!, indicates that the Smagorinsky model is too
dissipative. Implementing the dynamic model, improves the re-
sults but still does not provide a better answer than the one already
achieved with the compact/filtering procedure alone.

4.2.3 Effect of Time-Integration Scheme.The present test
case permits a comparison of the relative efficiency of explicit and
implicit time-marching procedures for the simulation of turbulent
wall-bounded flows. The results given above were computed with
a time-stepDt50.001,Dt1'0.025 which corresponds to a maxi-
mum CFL number of approximately 8.3~on Grid M!. Numerical

Fig. 18 Effect of spatial resolution on velocity fluctuations for turbulent channel flow
„C6F10– BW2 scheme …

Fig. 19 Instantaneous turbulent channel flow structure com-
puted on Grid F with C6F10– BW2 scheme

Fig. 20 Effect of spatial discretization on computed mean
streamwise velocity profile for turbulent channel flow „Grid M1 …
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instability was encountered with theC6F10-BW2 method for
Dt50.004,Dt1'0.05. It should be noted that in the presentcom-
pressiblesolver, instability sets in at values ofDt1 which are
smaller than those reported in Ref.@46# for an implicit incom-
pressiblemethod. In that study, asDt was increased, turbulence
suppression occurred prior to the onset of numerical instability.
The RK4 scheme was found to be very inefficient on this highly
stretched mesh. The explicit method was unstable for a time-step
as low as 0.0001 which corresponds to a CFL'0.8. Assuming that
a Dt5531025, CFL'0.4 could be used, this value would still be
a factor of 20 smaller that the corresponding time step for the
implicit solver.

The effect ofDt on the solution computed with the implicit
scheme was also investigated. The number of subiterations was
held constant and equal to three. Over the range 0.0005,Dt
,0.002, the effect of time-step on the mean velocity profile~Fig.
24! was found to be negligible. The turbulence fluctuations were
somewhat more sensitive, as shown in Fig. 25, for the spanwise
velocity. Nonetheless, results obtained with the two smallest time-
steps are in very close agreement. The second-order iterative im-

Fig. 21 Effect of spatial discretization on computed spanwise
velocity fluctuations „Grid M1 …

Fig. 22 Mean streamwise velocity profile for turbulent channel
flow computed with different SGS models „Grid M,
C6F10– BW2 scheme …

Fig. 23 Normal velocity fluctuations for turbulent channel flow
computed with different SGS models „Grid M, C6F10– BW2
scheme …

Fig. 24 Effect of computational time-step on mean streamwise
velocity profile for channel flow „Grid M, C6F10– BW2 scheme …

Fig. 25 Effect of computational time-step on spanwise veloc-
ity fluctuations for channel flow „Grid M, C6F10– BW2
scheme …
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plicit procedure therefore appears to be an accurate and efficient
approach for the simulation of compressible wall-bounded flows.

5 Summary
The evaluation of a recently developed high-order finite-

difference solver for compressible large-eddy simulation has been
presented. The method employs 4th- and 6th-order compact
schemes in conjunction with up to 10th-order low-pass Pade-type
filter operators which are required for numerical stability on
stretched and curvilinear meshes. The spatial schemes are coupled
with both explicit and implicit time-integration methods.

A comparison of several spatial discretizations and SGS ap-
proaches has been presented for the decay of compressible isotro-
pic turbulence and turbulent channel flow. The improved accuracy
of the compact/filtering method relative to standard second-order,
fourth-order, and upwind-biased approaches has been demon-
strated. This improvement is attributed to the better dispersion-
error characteristics of the compact approach, as well as to the
dissipation properties of the low-pass filter which only damps
high-frequency components. The accuracy and efficiency of the
implicit time-marching method relative to the explicit approach
has also been evaluated. It has been shown that the second-order
iterative implicit scheme represents an effective choice for LES of
compressible wall-bounded flows.

For the case of isotropic turbulence, better results are obtained
with the compact/filtering scheme applied to the unfiltered Navier-
Stokes equations~i.e., without an explicitly added SGS model!
than with the constant-coefficient and dynamic Smagorinsky LES
models. This is due to the fact that the SGS models, in contrast
with the optimized low-pass filter, exert dissipation over a wide
range of wave numbers including a portion of the resolved scales.
For low-Reynolds number turbulent channel flow simulations on
coarse meshes, the compact/filtering and dynamic models provide
similar results, with no clear advantage achieved through incorpo-
ration of the SGS model.

Application of the high-order solver to more complex flows,
including supersonic flat-plate boundary layer,@34#, cylinder
wake, @20#, and separated shock/boundary layer interactions,
@35,36#, have shown encouraging results. In all of those cases, the
compact/filtering and dynamic Smagorinsky approaches have
yielded comparable predictions. However, additional computa-
tions, in particular at higher Reynolds numbers, must be carried
out in order to further evaluate this issue. In addition, further
analysis of the turbulent kinetic energy dissipation enforced by the
spatial low-pass filter is also required.

Acknowledgments
The authors are grateful for AFOSR sponsorship under task

2304IW monitored by Major W. Hilbun and Dr. T. Beutner. This
work was also supported in part by a grant of HPC time from the
DoD HPC Shared Resource Centers at ASC, ERDC and NAVO.
The authors would like to thank Dr. G. Blaisdell for providing the
codes used to generate the initial isotropic turbulence conditions,
and for several helpful discussions. Many fruitful conversations
with Dr. D. Gaitonde regarding the numerical algorithms are also
gratefully acknowledged.

References
@1# Lesieur, M., and Metais, O., 1996, ‘‘New Trends in Large-Eddy Simulations of

Turbulence,’’ Annu. Rev. Fluid Mech.,28, pp. 45–82.
@2# Liu, C., and Liu, Z., eds. 1997,Advances in DNS/LES, Proceedings of First

AFOSR International Conference on DNS/LES, Ruston, LA, Aug., Greyden
Press.

@3# Knight, D., and Sakell, L., eds., 1999,Recent Advances in DNS and LES,
Proceedings of Second AFOSR International Conference on DNS/LES, New
Brunswick, NJ, June, Kluwer, Dordrecht, The Netherlands.

@4# Ghosal, S., 1999, ‘‘Mathematical and Physical Constraints on Large-Eddy
Simulation of Turbulence,’’ AIAA J.,37~4!, pp. 425–433.

@5# Kravchenko, A., and Moin, P., 1997, ‘‘On the Effects of Numerical Errors in

Large Eddy Simulation of Turbulent Flows,’’ J. Comput. Phys.,131~2!, pp.
310–322.

@6# Lele, S. K., 1992, ‘‘Compact Finite Difference Schemes With Spectral-Like
Resolution,’’ J. Comput. Phys.,103, pp. 16–42.

@7# Visbal, M. R., and Gaitonde, D. V., 1999, ‘‘High-Order Accurate Methods for
Complex Unsteady Subsonic Flows,’’ AIAA J.,37~10!, pp. 1231–1239.

@8# Gaitonde, D. V., and Visbal, M. R., 1999, ‘‘Further Development of a Navier-
Stokes Solution Procedure Based on Higher-Order Formulas,’’ AIAA Paper
No. 99-0557.

@9# Gaitonde, D. V., Shang, J. S., and Young, J. L., 1999, ‘‘Practical Aspects of
Higher-Order Numerical Schemes for Wave Propagation Phenomena,’’ Int. J.
Numer. Methods Eng.,45, pp. 1849–1869.

@10# Gaitonde, D. V., and Visbal, M. R., 1998, ‘‘High-Order Schemes for Navier-
Stokes Equations: Algorithm and Implementation into FDL3DI,’’ Technical
Report AFRL-VA-WP-TR-1998-3060, Air Force Research Laboratory, Wright-
Patterson AFB, OH.

@11# Visbal, M. R., and Gordnier, R. E., 2000, ‘‘A High-Order Flow Solver for
Deforming and Moving Meshes,’’ AIAA Paper No. 2000-2619.

@12# Visbal, M., and Gaitonde, D., 2001, ‘‘Very High-Order Spatially Implicit
Schemes for Computational Acoustics on Curvilinear Meshes,’’ J. Comput.
Acoust.,9~4!, pp. 1259–1286.

@13# Vinokur, M., 1974, ‘‘Conservation Equations of Gasdynamics in Curvilinear
Coordinate Systems,’’ J. Comput. Phys.,14, pp. 105–125.

@14# Steger, J. L., 1976, ‘‘Implicit Finite-Difference Simulation of Flow About Ar-
bitrary Two-Dimensional Geometries,’’ AIAA J.,16~7!, pp. 679–686.

@15# Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984,Computational
Fluid Mechanics and Heat Transfer, McGraw-Hill, New York.

@16# Erlebacher, G., Hussaini, M. Y., Speziale, C. G., and Zang, T. A., 1992, ‘‘To-
ward the Large-Eddy Simulation of Compressible Turbulent Flows,’’ Journal
of Fluid Mechanics,238, pp. 155–185.

@17# Smagorinsky, J. S., 1963, ‘‘General Circulation Experiments With the Primi-
tive Equations,’’ Mon. Weather Rev.,91~1!, pp. 99–165.

@18# Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., 1991, ‘‘Dynamic
Subgrid-Scale Eddy Viscosity Model,’’ Phys. Fluids A,3~7!, pp. 1760–1765.

@19# Moin, P., Squires, W., Cabot, W., and Lee, S., 1991, ‘‘A Dynamic Subgrid-
Scale Model for Compressible Turbulence and Scalar Transport,’’ Phys. Fluids
A, 3~11!, pp. 2746–2757.

@20# Rizzetta, D. P., Visbal, M. R., and Blaisdell, G. A., 1999, ‘‘Application of a
High-Order Compact Difference Scheme to Large-Eddy and Direct Numerical
Simulation,’’ AIAA Paper No. 99-3714.

@21# van Leer, B., 1979, ‘‘Towards the Ultimate Conservative Difference Scheme.
V. A Second-Order Sequel to Godunov’s Method,’’ J. Comput. Phys.,32, pp.
101–136.

@22# Alpert, P., 1981, ‘‘Implicit Filtering in Conjunction With Explicit Filtering,’’ J.
Comput. Phys.,44, pp. 212–219.

@23# Vichnevetsky, R., and Bowles, J. B., 1982,Fourier Analysis of Numerical
Approximations of Hyperbolic Equations~SIAM Studies in Applied Math-
ematics!, SIAM, Philadelphia.

@24# Jameson, A., Schmidt, W., and Turkel, E., 1981, ‘‘Numerical Solutions of the
Euler Equations by a Finite Volume Method Using Runge-Kutta Time Step-
ping Schemes,’’ AIAA Paper No. 81-1259.

@25# Pulliam, T., 1986, ‘‘Artificial Dissipation models for the Euler Equations,’’
AIAA J., 24~12!, pp. 1931–1940.

@26# Tam, C. K. W., 1995, ‘‘Computational Aeroacoustics: Issues and Methods,’’
AIAA J., 33~10!, pp. 1788–1796.

@27# Thomas, P. D., and Lombard, C. K., 1979, ‘‘Geometric Conservation Law and
Its Application to Flow Computations on Moving Grids,’’ AIAA J.,17~10!, pp.
1030–1037.

@28# Beam, R., and Warming, R., 1978, ‘‘An Implicit Factored Scheme for the
Compressible Navier-Stokes Equations,’’ AIAA J.,16~4!, pp. 393–402.

@29# Pulliam, T. H., and Chaussee, D. S., 1981, ‘‘A Diagonal Form of an Implicit
Approximate-Factorization Algorithm,’’ J. Comput. Phys.,39~2!, pp. 347–363.

@30# Visbal, M., 2001, ‘‘Advances in High-Resolution Schemes for Computational
Acoustics on General Geometries,’’ RTO-MP-079~A!, Proceedings From RTO
Symposium on Aging Mechanisms and Control/Part A: Developments in Com-
putational Aero- and Hydro-Acoustics, RTO Applied Vehicle Technology
Panel, Manchester, UK, Oct.

@31# Visbal, M. R., Gaitonde, D. V., and Gogineni, S. P., 1998, ‘‘Direct Numerical
Simulation of a Forced Transitional Plane Wall Jet,’’AIAA Paper No. 98-2643.

@32# Rizzetta, D. P., Visbal, M. R., and Stanek, M. J., 1999, ‘‘Numerical Investiga-
tion of Synthetic-Jet Flow Fields,’’ AIAA J.,37~8!.

@33# Visbal, M. R., and Gordnier, R. E., 2001, ‘‘Direct Numerical Simulation of the
Interaction of a Boundary Layer With a Flexible Panel,’’ AIAA Paper No.
2001-2721.

@34# Rizzetta, D. P., Visbal, M. R., and Gaitonde, D. V., 2000, ‘‘Direct Numerical
and Large-Eddy Simulation of Supersonic Flows by a High-Order Method,’’
AIAA Paper No. 2000-2408.

@35# Rizzetta, D. P., and Visbal, M. R., 2001, ‘‘Large-Eddy Simulation of Super-
sonic Compression-Ramp Flows,’’ AIAA Paper No. 2001-2858.

@36# Rizzetta, D. P., Visbal, M. R., and Gaitonde, D. V., 2001, ‘‘Large-Eddy Simu-
lation of Supersonic Compression-Ramp Flow by a Hihg-Order Method,’’
AIAA J., 39~12!, pp. 2283–2292.

@37# Roe, P. L., 1981, ‘‘Approximate Riemann Solvers, Parameter Vectors and Dif-
ference Schemes,’’ J. Comput. Phys.,43, pp. 357–372.

@38# Grinstein, F., and Fureby, C., 2002, ‘‘Recent Progress on Miles for High
Reynolds-Number Flows,’’ AIAA Paper No. 2002-0134.

@39# Domaradzki, J., and Radhakrishnan, S., 2002, ‘‘Subgrid-Scale Modeling Using

846 Õ Vol. 124, DECEMBER 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Truncated Navier-Stokes Dynamics,’’ AIAA Paper No. 2002-0285.
@40# Stolz, S., and Adams, N., 1999, ‘‘An Approximate Deconvolution Procedure

for Large-Eddy Simulation,’’ Phys. Fluids,11~7!, pp. 1699–1701.
@41# Spyropoulos, E. T., and Blaisdell, G. A., 1996, ‘‘Evaluation of the Dynamic

Model for Simulations of Compressible Decaying Isotropic Turbulence,’’
AIAA J., 34~5!, pp. 990–998.

@42# Hughes, T. J., Mazzei, L., and Jansen, K., 2000, ‘‘Large Eddy Simulation and
the Variational Multiscale Method,’’ Comput. Visual. Sci.,3, pp. 47–59.

@43# Schumann, U., 1975, ‘‘Subgrid-Scale Model for Finite Difference Simulations

of Turbulent Flows in Plane Channels and Annuli,’’ J. Comput. Phys.,18~4!,
pp. 376–404.

@44# Piomelli, U., 1993, ‘‘High Reynolds Number Calculations Using the Dynamic
Subgrid-Scale Stress Model,’’ Phys. Fluids,5~6!, pp. 1484–1490.

@45# Kim, J., Moin, P., and Moser, R., 1992, ‘‘Turbulent Statistics in Fully Devel-
oped Channel Flow at Low Reynolds Number,’’ASME J. Fluids Eng.,117, pp.
133–166.

@46# Choi, H., and Moin, P., 1994, ‘‘Effects of the Computational Time Step on
Numerical Solutions of Turbulent Flow,’’ J. Comput. Phys.,113~1!, pp. 1–4.

Journal of Fluids Engineering DECEMBER 2002, Vol. 124 Õ 847

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



F. F. Grinstein
Naval Research Laboratory,

Laboratory for Computational
Physics and Fluid Dynamics,

Code 6410,
Washington, DC 20375-5344

C. Fureby
The Swedish Defence Research Agency,

FOI,
Department of Weapons and Protection,

Warheads and Propulsion,
SE-172 90, Stockholm,

Sweden

Recent Progress on MILES for
High Reynolds Number Flows
A promising large-eddy simulation (LES) approach is monotonically integrated LES
(MILES) which involves solving the Navier-Stokes equations using high-resolution mono-
tone algorithms. In MILES, the subgrid scale (SGS) flow physics is provided by intrinsic,
nonlinear, high-frequency filters built into the discretization and implicit SGS models.
Mathematical and physical aspects of implicit SGS modeling using nonlinear flux-limiters
are addressed using a formalism based on the modified LES equations approach. Detailed
properties of the implicit subgrid model are related to the flux limiter, which in turn
depends on the specifics of the numerical scheme; we illustrate how the latter properties
can directly affect their potential in the MILES framework. Major unresolved issues
relevant to LES of complex practical turbulent flows are discussed in this context, includ-
ing some aspects of boundary condition modeling and overall computational model
validation. @DOI: 10.1115/1.1516576#

1 Introduction
Large-eddy simulation~LES! has emerged as a viable alterna-

tive to direct numerical simulation~DNS! and Reynolds average
Navier-Stokes ~RANS! modeling to challenge the scale-
complexity problem of high Reynolds~Re! number flow. As op-
posed to RANS, in which the NSE are averaged over time homo-
geneous directions, or across ensembles of equivalent flows, LES
relies on local volumetric averaging, thus preserving the dynamics
of the large scales. This averaging is devised to eliminate eddies
smaller than the characteristic mesh resolutionD. As a conse-
quence of this averaging, the LES equations are incomplete since
they do not contain information about the unresolved subgrid
scale~SGS! flow, and modeling is required to provide guidance
about the effects of the subgrid flow on the resolved flow. In the
absence of a universal theory of turbulence the development and
progress of such models must include the rational use of empirical
information. Present-day SGS models include algebraic and semi-
algebraic models developed in physical space,@1–3#, and models
developed in some adjoint space,@1,4,5#. Although some of the
more advanced SGS models,@1#, can outperform the traditional
isotropic eddy-viscosity models, their practical use is typically
limited by their complexity, and it is therefore desirable to also
investigate alternative nonconventional approaches.

Far from solid boundaries the SGS flow physics is ideally con-
sidered homogeneous and isotropic. However, laboratory studies,
@6#, and numerical simulations,@7#, proved the existence of orga-
nized vortical structures—with concentration of vorticity in elon-
gated filaments~worm-vortices! characterizing the smallest coher-
ent structures~CS! of turbulent flows,@8,9#. The existence of
worm-vortices in isotropic homogeneous turbulent flows can be
traced to an anisotropic feature of the small-scale organization of
turbulent flows: the fact that high-magnitude vorticity is preferen-
tially aligned with the eigenvector corresponding to the interme-
diate eigenvalue of the rate-of-strain tensor with very little such
preferential alignment for the lower-magnitude vorticity,@10,11#.
This is a kinematic property independent of the dynamics in-
volved in the vorticity generation,@8,11#, and it suggests that char-
acteristic small-scale CS in turbulent flows can be locally re-
garded as two-dimensional structures stretched by strain weaker
than the small-scale vorticity—a concept that has been used when
developing vortex-based SGS models,@12#. Close to the wall, the
length scales of the most energetic eddies decrease, and if the

computational grid in LES is unable to resolve these length scales
then anisotropy in the turbulent flow will become anisotropy of
the SGS motion thus necessitating SGS models capable of han-
dling simultaneous flow and grid anisotropy. The number of nodes
required in LES of wall bounded flows scales with the square of
the friction-velocity-based Re number,@13#, which is almost the
same as for DNS, and fine grids are necessary to resolve the
mechanisms responsible for self-sustaining turbulence in wall-
bounded flows,@14#.

Drawbacks of the conventional LES model include the possible
masking of the SGS terms by the leading order truncation error,
the ambiguity in using spatial filtering and the difficulty of formu-
lating SGS models for complex high Re number wall-bounded
flows. The task of formulating numerical simulation models in-
volves tradeoffs, both numerically and from a physical standpoint
and the accuracy of the computer model is not better than the
weakest part of the model. With this regard it is important to
consider not only physical and numerical aspects but also their
combined effects. Advanced SGS models for LES as well as nu-
merical schemes have been developed and successfully applied to
different flow problems, but not very often has the computational
model, i.e., the modified equations, been carefully examined. LES
models taking these aspects into account may be based on solving
the NSE with high-resolution schemes such as the flux corrected
transport ~FCT! method, @15#, the piecewise parabolic method
~PPM!, @16,17#, total variational diminishing~TVD! schemes,
@18#, Riemann solvers,@19#, the MPDATA advection scheme@20#,
and the spectral vanishing viscosity method,@21#.

Here we focus on the monotonically integrated LES~MILES!
approach,@22,23#, in which non-linear high-frequency filters built
into a particular class of algorithms are used to provide implicit
SGS models, in contrast to conventional LES where explicit SGS
models are introduced for closure prior to discretization. Although
the history of MILES draws on the development of shock-
capturing schemes, e.g.,@15#, the concept of MILES, as developed
in @23,24#, attempts to embody a general computational procedure
for solving the NSE for high Re number turbulent flows as accu-
rately as possible using built-in~implicit! SGS turbulence models.
Due to the anisotropic nature of the SGS modeling in MILES,
simultaneously handling flow and grid anisotropies, we believe it
provides an improved computational framework for inhomoge-
neous high Re flows.

The outline of the paper is as follows. A brief overview of LES
and its analysis is presented in Section 2, which is used as refer-
ence for the formal discussion of the properties of subgrid mod-
eling using MILES presented in Section 3; selected previous ap-
plications of MILES in the study of inhomogeneous flows are
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reviewed in Section 4. Relevant issues of near-wall flow modeling
with LES and MILES are discussed in Section 5, and further
illustrated by channel-flow case studies. Section 6 discusses the
crucial additional aspects of LES of practical complex flows re-
lating to overall computational model development and validation.
Finally, some concluding remarks are given in Section 7.

2 The Conventional Large-Eddy Simulation Model
To simplify the discussion of the LES and MILES formalism,

the focus in this and the next section is on the incompressible limit
regime; a more general presentation can be found in@23# or @24#.
In LES, the motion is separated into small and large eddies and
equations are solved for the latter. The separation is achieved by
means of a low-pass filter, for details see@1,25#. Convoluting the
NSE with a pre-defined filter kernelG5G(x,D) yields the LES
equations,

H ¹• v̄5mr,

] t~ v̄!1¹•~ v̄^ v̄!52¹ p̄1¹•~S̄2B!1mv,
(1)

wherev is the velocity,p the pressure,S52vD the viscous stress
tensor,D5 1/2 (L1LT) the rate-of-strain tensor,v the viscosity,
andL5¹v. Specific to LES is the resolved parts~denoted by an
overbar!, the subgrid scale stress tensorB5(v^ v2 v̄^ v̄) and the
commutation error termsmr5@G* ,¹#v and mv5@G* ,¹#(v^ v
1pI2S), where@G* ,¹# f 5¹ f 2¹ f̄ is the commutation opera-
tor. Only the resolved scales are thus retained in LES whereas the
subgrid scales are grouped inB, which has to be modeled using an
expression of the typeB(x,t)5B@ v̄(x8,t8);x,t#. Physical argu-
ments and mathematical analysis suggests that~i! B is invariant
under a change of frame,@26,27#; ~ii ! B is positive definite sym-
metric, providedG(x) is symmetric,@26,28#; and ~iii ! that the
inequalitiesk5 1/2 trB>0, k2>iBi2 and detB>0 must be satis-
fied in order forB to be positive definite,@26,28#. The commuta-

tion errors,mr andmv, reflect the fact that filtering and differen-
tiation do not generally commute,@26,29#, and the effects of these
terms on the resolved flow are currently not well known, particu-
larly for complex flows, and must be further investigated.

Two modeling strategies forB exist.Functional modelingcon-
sists in modeling the action of the subgrid scales on the resolved
scales. This is basically of energetic nature so that the balance of
the energy transfers between the two scale ranges is sufficient to
describe the subgrid scale effects. Hence, the energy transfer
mechanism from the resolved to the subgrid scales is assumed
analogous to that of a Brownian motion superimposed on the large
scale motion, i.e.,B522vkD̄ wherevk is the subgrid viscosity. A
wide range of models of this type is presently being used,@30–
32#. Structural modelingconsists of modelingB without incorpo-
rating any knowledge of the nature of the interactions between the
subgrid and the resolved scales. Such models can be based either
on ~i! series expansion techniques,@32,33#, ~ii ! modeled transport
equations forB, @34#, ~iii ! scale similarity or mixed models,
@35,36#, or ~iv! other deterministic models,@1#.

LES requires high-order numerical methods to avoid masking
¹•B by the leading-order truncation error. In general,D is related
to the grid,D}udu, where udu is the grid size, which makes the
modeled subgrid stressesO(udu2) terms. In LES, spectral and
high-order finite volume, element or difference methods are used
for spatial discretization, while explicit semi-implicit or predictor-
corrector methods are used for time-integration. For complex ge-
ometries the finite volume~FV! method is the most convenient
technique. Here, the domainD is partitioned into cellsVP so that
øP(VP)5DødD and ùP(VP)5B. The cell-average off over
the Pth cell is f P51/dV *V f dV so that Gauss theorem may be
used to derive the semi-discretized LES equations. By integrating
these over time, using, e.g., a multistep method,@37#,

5
b iDt

dVP
(

f
@F f

C,r#n1 i50,

(
i 50

m S a i~ v̄!P
n1 i1

b iDt

dVP
(

f
@Ff

C,v1Ff
D,v1Ff

B,v#n1 i D 52b i~¹ p̄!P
n1 iDt1b i~ f̄ !P

n1 iDt,

(2)

where m, a i , and b i are parameters of the scheme andF f
C,r

5( v̄•dA) f , Ff
C,v5( v̄•dA) f v̄f , Ff

B,v5(B) fdA and Ff
D,v

5(v¹ v̄) fdA and are the convective, viscous and subgrid fluxes.
To close the FV discretization the fluxes~at face f ) need to be
reconstructed from the variables at adjacent cells. This requires
flux interpolation for the convective fluxes and difference approxi-
mations for the inner derivatives of the other fluxes. Typically, for
second-order accuracy,

H Ff
D,v5vudAu~ v̄N2 v̄P!/udu1

1

6
v~d^ d!¹3v̄,

Ff
C,v5F f

C,rv̄f5F f
C,rS l v̄P1~12l !v̄N2

1

8
~d^ d!¹2v̄D ,

(3)

where 1/6v(d^ d)¹3v̄ and 2 1/8 (d^ d)¹2v̄ represent the
leading-order truncation errors. The Eqs.~2! can be decoupled by
combining ~21! and ~22! into a Poisson equation forp̄, that is
solved together with~32!. The scalar equations are usually solved
sequentially, with iteration over the explicit source terms to obtain
rapid convergence.

3 Monotonically Integrated Large-Eddy Simulation

The task of formulating computational fluid dynamics models
involves both numerical and physical tradeoffs and the accuracy
of the model is not better than its weakest part. With this regard it
is important to consider not only physical and numerical aspects
but also their combined effects. Sophisticated SGS models and
advanced numerical methods have been developed for LES and
successfully applied to different flow problems, but not very often
has the overall computational model, i.e., the modified equations,
been used as basis for improved LES. Although the history of
MILES draws on the development of shock-capturing schemes,
@15#, the concept of MILES, as developed in@22–24#, attempts to
embody a computational procedure for solving the NSE as accu-
rately as possible using built-in, or implicit, SGS models. Because
of the anisotropic features of the SGS modeling in MILES,@23#,
with possibilities of simultaneously handling flow and grid
anisotropies, this may provide a better approach for inhomoge-
neous turbulent flows.

As compared to conventional LES, where the SGS effects are
represented by explicit SGS models, MILES uses the features of
particular numerical methods to construct implicit SGS models by
means of the leading order truncation error,@23#. By incorporating
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a sharp velocity-gradient capturing capability operating at the
smallest resolved scales, with MILES we seek to emulate~near
the cutoff!, the high wave number end of the inertial subrange
region—characterized by thin filaments of intense vorticity em-
bedded in a background of weak vorticity,@6–11,23,38#. MILES

draws on the fact that finite difference, volume and element meth-
ods filter the NSE over cellsVP , with typical dimensionudu—
using a top-hat shaped kernelf P5(1/dVP) *VP

f dV. In the FV
context the semi-discretized MILES equations can be obtained
from the NSE using Gauss’ theorem, viz.,

5
b iDt

dVP
(

f
@F f

C,r#n1 i50,

(
i 50

m S a i~v!P
n1 i1

b iDt

dVP
(

f
@Ff

C,v1Ff
D,v#n1 i D 52b i~¹p!P

n1 iDt1b i~ f!P
n1 iDt,

(4)

where F f
C,r5(v•dA) f , Ff

C,v5(v•dA) fvf and Ff
D,v5(v¹v) fdA

are the convective and viscous fluxes. To complete the discretiza-
tion, all fluxes at facef need to be reconstructed from the depen-
dent variables at adjacent cells. This requires flux interpolation for
the convective fluxes and difference approximations for the inner
derivatives in the other fluxes. Given~4! the methods available for
constructing implicit SGS models by means of the leading order
truncation errors are generally restricted to nonlinear ‘‘high-
resolution’’ methods for the convective fluxesFf

C,v and F f
C,e , in

order to maintain second-order accuracy in smooth regions of the
flow, @39#. The term high-resolution applies to methods that are at
least second-order accurate on smooth solutions and yet give well-
resolved, nonoscillatory discontinuities. In addition, these
schemes are required to provide a leading order truncation error
that vanishes asd→0, so that it remains consistent with the NSE
and the conventional LES model~1!. There are a wide variety of
approaches that can be taken, e.g.,@37,40#, but here we will focus
on flux-limiting/correcting methods.

Here we introduce a flux-limiterG to combine a high-order
convective flux-functionvf

H that is well behaved in smooth flow
regions, with a low-order dispersion-free flux-functionvf

L , being
well behaved near sharp gradients, so that the total flux-function
becomesvf5vf

H2(12G)@vf
H2vf

L#. Typically, vf
H is obtained

from linear or cubic interpolations resulting in second or fourth-
order accurate central schemes, respectively, whilevf

L is obtained
from an upwind-biased piecewise constant approximation, i.e.,

H Ff
C,v,H5F f

C,rF l vP1~12l !vN2
1

8
~d^ d!¹2v1 . . . G ,

Ff
C,v,L5F f

C,r@b1vP1b2vN1~b12b2!~¹v!d1 . . . #;

b65
1

2
~vf•dA6uvf•dAu!/uvf•dAu, (5)

wherel is the distance function, and2 1/8 (d^ d)¹2v and (b1

2b2)(¹v)d are the leading order truncation errors. The flux lim-
iter G is to be formulated as to allow as much as possible of the
correction or anti-diffusion term@vf

H2vf
L# to be included without

increasing the variation of the solution—e.g., to comply with the
physical principles of causality, monotonicity and positivity~when
applicable!, @22#, and thus to preserve the properties of the NSE.

To see the effects of this convection discretization we consider
the modified equations corresponding to the semi-discretized Eq.
~4! with the flux-functions~5! for the viscous, diffusive, auxiliary
and convective fluxes, respectively,

H ¹•v50,
] t~v!1¹•~v^ v!52¹p1¹•S1f1¹

•S CLT1LCT1x2Ld ^ Ld1
1

6
v~d^ d!¹3vD ,

(6)

whereC5x(v^ d) and x5 1/2 (12G)(b22b1). As compared
to the NSE the discretization has introduced additional dissipative
and dispersive terms, from which we identify the implicit SGS
term,

B5CLT1LCT1x2Ld ^ Ld . (7)

The implicit SGS stress tensor can be split intoB(1)5CLT

1LCT and B(2)5x2(Ld ^ Ld ), in which the former is a tensor-
valued eddy-viscosity model, while the latter is of a form similar
to the SSM part in the mixed model,@35#. This decomposition is
also attractive considering the decomposition into rapid and slow
parts,@41#. In MILES, the rapid part that cannot be captured by
isotropic models relates toB(2), while the slow part relates to
B(1). Borue and Orszag,@42#, have shown that aB(2) type term
improves the correlations between the exact and modeled SGS
stress tensor. A closely-related view supporting the suitability of
the implicit SGS modeling thus enforced has been recently given,
@43#; the suggestion is that the leading order truncation error in-
troduced by nonoscillatory finite volume schemes represents a
physical flow regularization term, providing necessary modifica-
tions to the governing equations that arise when the motion of
finite volumes of fluid over finite intervals of time is considered.

The challenge is to identify features that must be built into the
flux limiters, and thus into the numerical schemes, to achieve
desirable physical properties in the associated implicit SGS mod-
eling, such as frame indifference, realizability, symmetry and non-
negative dissipation of SGS kinetic energy. In previous work,
@22#, we outlined a formalism providing mathematical and physi-
cal constraints which can be used as guideline in choosing flux-
limiters—a choice similar to that of choosing an SGS model in the
context of conventional LES. Detailed properties of the implicit
SGS model are related to the flux limiterG, which in turn depends
on the specifics of the numerical scheme. Seeking to characterize
these features, we consider a one-dimensional continuity equation
] t(r)1]x(rv)50, with v.0. Discretization using the FV method
and the flux-limiter formulationr f5r f

H2(12G)@r f
H2r f

L# yields

rP
n115rP

n 2yF S 12
1

2
GP21/2D drP21/2

n 2
1

2
GP11/2drP11/2

n G
52CdrP21/2

n 1DdrP11/2
n , (8)

where drP21/2
n 5rP

n 2rP21
n , drP11/2

n 5rP11
n 2rP

n and y
5vDt/Dx is the Courant number. Following Harten@44#, a
method of this form is total variation diminishing~TVD!, i.e.,
TV(rn11)<TV(rn), whereTV(rn)5SPurP11

n 2rP
n u is the total

variation, if and only ifC>0, D>0 andC1D<1. Assuming that
the flux limiter can be expressed asG5G(r ), in which r
5drP21/2

n /drP11/2
n 5(rP

n 2rP21
n )/(rP11

n 2rP
n ) is the ratio of con-

secutive gradients, these inequalities are simultaneously satisfied
if and only if,
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0<uG~r !, G~r !/r u<2. (9)

To reach second-order accuracy we further require thatG(1)51
and thatG be Lipschitz continuous inr . It is helpful to examine
the significance of the constraint~10! graphically in Fig. 1~see
also @45#!, where a trace lying above another~e.g., ‘‘superbee’’
relative to ‘‘minmod’’! is associated with a less diffusive scheme.
The TVD constraints are satisfied within the shaded area in Fig. 1,
where we have chosen to locate the intermediate van Leer limiter
and the border-line minmod and superbee limiters; also indicated
in Fig. 1, are the usefulr -independent limiting reference cases—
the first-order upwind~UD, G50) and the second-order central
difference~CD, G51) schemes. Unfortunately, this kind of com-
parative analysis cannot be readily extended to include all pos-
sible flux limiters of interest for MILES—e.g., FCT and PPM, for
which the correspondingG’s are not expressible as function only
of the ratio r . Various other constraints can be imposed on the
overall scheme, depending on the computational model require-
ments. If the scheme can be expressed asrP

n11

5H(rP2k
n ,rP2k11

n , . . . ,rP1k
n ), the most common constraints

are

• monotonicity,]H/]r j
n>0 for all P2k, j ,P1k,

• 11-contraction,irP
n112 r̃P

n11i1<irP
n 2 r̃P

n i1 , wherer and r̃
are solutions to the same equation with different initial data, and
wherei•i1 denotes the 11-norm,

• monotonicity preservation, i.e., ifrP
0>rP11

0 then rP
n>rP11

n

for all P andn.

It is evident that a monotone method is also 11-contracting, and
thus TVD, which implies that the scheme is monotonicity preserv-
ing. On the other hand, it can be verified that the first-order up-
wind scheme~being first-order TVD! is not necessarily monotone.
In contrast with the global constraints imposed by TVD methods,
weaker constraints result from requiring that a dependent variable
should be instantaneously and locally monotone preserving. Be-
cause of their inherently less-diffusive nature, local monotone
constraints are more attractive choices in developing MILES
schemes. Based on our accumulated experience, monotone and
11-contracting methods are generally too diffusive, whereas some
TVD methods~e.g., the superbee limiter,@46#! together with most
monotonicity preserving methods~e.g., FCT, PPM, and GAMMA,
@47#! work well for MILES. In order to illustrate this, we show, in
Fig. 2, results from MILES of fully developed turbulent channel
flow at a friction velocity based Re number of Ret5395. Included
are also the DNS results,@48#. The computational details will be
described in Section 5. From this comparison it is evident that the
van Leer limiter is too diffusive, producing poor velocity profiles,
while both FCT and GAMMA produce velocity profiles that agree
well with the reference DNS data.

4 Inhomogeneous Free Flows
FCT-based MILES of free shear flows have been extensively

compared with laboratory flows in various different shear flow
configurations at moderately high Re numbers. Recent studies of
forced and decaying homogeneous isotropic turbulence,@23,24#,
and studies of subsonic,@49,50# and supersonic,@51,52#, jet flows
demonstrated that MILES can be successfully used to simulate
~and elucidate! the governing features of the unsteady vortex
dynamics.

A representative example of the MILES jet studies is shown in
Fig. 3. Figure 3~a! illustrates the axis-switching and bifurcation
from visualizations of laboratory elliptical jets subject to strong
excitation at the preferred mode,@53#, compared to the results of
carefully developed simulations designed to address unresolved
issues of the vortex dynamics suggested by the laboratory studies.
The key underlying aspects of the vortex ring bifurcation process
were first demonstrated by the simulations,@49,50#, including
self-induced deformation, reconnection, bridging and threading—

mechanisms which could not be captured by the laboratory visu-
alizations. A path for transition to turbulence based on strong vor-
tex interactions—partially shown on the right of Fig. 3~b!, was
also demonstrated; the cascade scenario involves ‘‘fusion’’ of the
split rings to form a larger distorted ring followed by subsequent
global self-deformation and axis-switching, additional reconnec-
tions and shedding of~predominantly axial! vorticity in its wake,
and more contorted~and azimuthally unstable! split rings. There
are different interesting possibilities for how the jet flow develops,
depending on the particular jet initial conditions~see, e.g., Fig.
3~c!!, the nozzle geometry and modifications introduced at the jet
exit, the types of unsteady vortex interactions initiated, as well as
local transitions from convectively to absolutely unstable flow.
This is of interest in the context of improving the mixing of a jet
~or plume! with its surroundings in many practical applications.

Jet noise generation, for example, is associated with mixing of
the turbulent jet exhaust with the entrained ambient flow. The
active noise producing regions in a high-speed jet are character-
ized by two distinct well-separated components~see@54# and ref-
erences therein!. The lower-k radiation component is associated
with inherently inviscid mechanisms involving large-scale vortical
coherent structures~CS! ~e.g., @55#! and dominates in the down-
stream directions of the jet; the higherk component is more iso-
tropic, it is associated with the finer-scale turbulent mechanisms,
and dominates on the sidelines and upstream directions. Presently
used practical hybrid approaches consider the jet aeroacoustics
computation as consisting of two parts: nonlinear sound genera-
tion and linear~far-field! sound propagation,@56#. As noted in
@54#, the particular features of the relevant turbulent energy spec-
trum in the noise-producing region of high-speed jets directly sup-
ports the prospect of performing simulation of the noise-
generating near and midfield regions of the jet with LES; the
appropriate LES approach would use an LES cutoff wavelength
suitably chosen between the peaks in the energy spectrum—so
that large scales of the near and midjet flow can be simulated, and
less-demanding~more universal! accounting of the small-scale
flow features can be undertaken by using suitable SGS models.

The contribution of CS to jet noise can be related directly to the
CS dynamics~Fig. 4!. Based on the database generated with
MILES, the basic features of acoustic radiation generated by vor-
tex rollup and pairing in the shear layer could be captured, and
used to demonstrate global instabilities in convectively unstable
subsonic shear flow,@57#; features captured with MILES included,
the quadrupole pattern associated with vortices, the significantly
more intense dilatation and pressure fluctuations associated with
vortex pairing, and the very low characteristic fluctuation level
~e.g., three to four orders of magnitude smaller than ambient val-
ues!, @52,57#. Complex mechanisms occurring when vortex ring
structures break down, e.g., involved in vortex ring bifurcation
discussed above, have been hypothesized,@58#, to be responsible
for most of the jet noise. Carefully executed simulations may be
used to isolate the assumed dominant three-dimensional vortex
dynamical processes in the jet regions where most of the sound
generation is believed to occur. Of particular interest, is to address
the sensitivity of these mechanisms to modifications in the initial
conditions that can significantly affect the Kelvin-Helmholtz in-
stabilities as well as local transitions from convectively to abso-
lutely unstable flow.

Accurate resolution of the very small characteristic fluctuation
levels associated with acoustical radiation from the jet represents
a major computational challenge: dispersiveness of the numerical
algorithm should be minimized to ensure good modeling of the
acoustical propagation properties of the small wavelengths,@59#,
and because of the very small energy of the acoustic field as
compared to that of flowfield, there is a potential for spurious
sound sources due to numerical discretization. Conventional nu-
merical schemes used in these kind of simulations are thus re-
quired to provide high-order accuracy—at least fourth-order in
space and second-order in time,@59#. Because of the tensorial
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nature of its implicit SGS model, and the inherently low numeri-
cal diffusion involved, the use of flux-limiting in MILES offers an
overall effective computational alternative to conventional SGS
models when seeking refined LES for inhomogeneous turbulent
flows as required in this context. Flux-limiting schemes are more
accurate than comparable conventional schemes; FCT as used
here, for example, is second-order accurate in amplitude and
fourth-order phase accurate@15#, based on its formal properties in
smooth regions~where the higher-order scheme is active!, while
the concept of accuracy based on Taylor series is actually mean-
ingless near discontinuities~where the lower-order scheme is
active!.

5 Near-Wall Flow Physics and Modeling
LES of wall-bounded flows becomes prohibitively expensive at

high Re numbers if one attempts to resolve the small but dynami-
cally important eddies in the near-wall region. These structures
can be captured in so-called wall-resolved LES withDy1,2,
Dx1,200, andDz1,30, in the wall normal, streamwise, and
spanwise directions, respectively. Here, the superscript ‘‘1 ’’ de-

notes the inner-scale nondimensionalization utilizing the viscous
length scale,lt5v/ut , and the friction velocity,ut5tw

1/2, where
the wall-shear stress is defined bytw5v(]v/]y)uw , so thatx1

5xut /v and v15v/ut . The number of grid points required
scales with the square of the friction Re number, i.e.,N}Ret

2 ,
which is nearly the same as for DNS; here, Ret5utd/v andd is the
boundary layer thickness, which is used as outer length-scale for
wall-normal nondimensionalization. To circumvent this severe
resolution requirement, the subgrid models can either be modified
to accommodate integration all the way to the wall, or one may try
to introduce explicit wall models, or subgrid simulation models
may be developed. In all these methods, LES is conducted on a
relatively coarse grid designed to resolve the desired outer flow
scales. When using separate wall models, the dynamic effects of
the energy-containing eddies in the wall layer~viscous and buffer
regions! are determined from a wall-model calculation, which
provides to the outer flow LES with a set of approximate bound-
ary conditions or parameters.

The simplest approach to circumvent the near-wall problem is

Fig. 1 TVD regions for first and second accurate TVD schemes together with
selected limiters

Fig. 2 Time-averaged „or mean … velocity profiles Š v̄ 1‹ normalized by the fric-
tion velocity u tt for fully developed turbulent channel flow at Re tÄ395 from
MILES using different flux-limiters
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to modify the subgrid models using:~i! damping functions,D, so
thatvk5Dvk , where typicallyD5(12exp(2(by1)3))1/2, @1#, ~ii !
dynamic procedures,@60#, to determine the model coefficients
(cD , ck and c«) in a subgrid eddy-viscosity model,~iii ! models
for the eddy-viscosity coefficients (cD , ck , andc«) that include

viscous subrange effects, Voke,@61#, or ~iv! SGS models with
structural sensors, Sagaut,@62#. These methods are, however, not
believed useful for high Re number complex flows.

The simplest wall models are based on analytical expressions
for the wall shear stresstw , which are analogous to the wall

Fig. 3 Flow visualizations of vortex-ring bifurcation phenomena for AR Ä4
jets; „a… elliptic cold jets „laboratory …, †53‡ and „b… rectangular cold jets „MILES…,
†50‡. The flow direction is from bottom to top and time-sequences progress
from left to right, in the numerical visualizations „based on isosurfaces of the
vorticity magnitude …; „c… sensitivity of vortex ring dynamics to jet initial condi-
tions „Tj ÕTaÄ1 in ‘‘cold’’ case, and Tj ÕTaÄ5 in ‘‘hot’’ case …; ReÄGÌ90,000, and
MÄ0.6, based on the circulation G of the initial vortex rings and transient jet
velocity.

Fig. 4 Near-field MILES simulations of vortex-ring dynamics and associated sound generation in free jets
emerging from rectangular nozzles, †51‡; instantaneous visualizations: „a… unforced supersonic jet with AR Ä2,
„b… axially forced subsonic jet with AR Ä4
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functions commonly used in RANS calculations. They provide an
algebraic relationship between the local wall stresses and the tan-
gential velocities at the first off-wall velocity nodes, e.g., Gro¨tz-
bach @63#, and Piomelli et al.@64#. These algebraic models all
imply the logarithmic law of the wall for the time-averaged ve-
locity, which is not valid in many complex flows. To incorporate
more physics into the model, wall models based on the boundary
layer approximations have been proposed in recent years, Cabot
and Moin @65#. In these models, turbulent boundary layer equa-
tions are solved on an embedded near-wall grid to computetw ,
using a mixing length model. Reasonable success has been
achieved in predicting attached flows and flows with fixed sepa-
ration points, e.g., the backward-facing step flow. However, the
model parameters have to be adjusted from the ordinary RANS
values in order to obtain accurate results. We here propose to
determine~locally! the friction velocityut from

vy
15y1 if y1<11.225 and

(10)
vy

15k21 ln~y1!1B if y1.11.225.

The approximate wall boundary condition can be implemented by
adding a subgrid wall-viscosityvBC to the molecular viscosityv
on the wall so that the effective viscosity becomes

v1vBC5tw /~]vy /]y!P5ut
2yP /vy,P5utyP /~vy,P /ut!

5utyy,P /vy,P
1 , (11)

where the superscriptP denotes that the quantity is to be evalu-
ated at the first grid point away from the wall. The calculation of
ut is performed~locally! by a Newton-Raphson algorithm.

A further, more advanced category is based on a ‘‘grid within
the grid’’ approach,@66,67#, in which simplified one-dimensional
momentum equations are solved on a one-dimensional grid,
aligned with the wall-normal embedded into the LES grid.

5.1 LES and MILES of Fully Developed Turbulent Chan-
nel Flows. To investigate MILES for wall-bounded flows we
start by examining fully developed turbulent flows in a channel
confined between two parallel plates at a distance 2h apart, where
h is the channel half-width. The flow is driven by a constant mass
flow in the streamwise (e1) direction defining the mean velocity
^v̄&. No-slip conditions are imposed in the cross-stream (e2) di-
rection and periodic conditions are used in the spanwise (e3) di-
rection. As initial conditions we use a parabolic velocity profile
with 5% Gaussian white noise. After reaching a statistically steady
state the simulations were continued for another 40•h/ut time
units to obtain statistics. We study three cases with target Re num-
bers of Ret5395, 2030, and 10,000, for which data is available,
from DNS, @48,68#, and experiments,@69#, respectively. The size
of the channel is 6h32h33h in the streamwise, cross-stream,
and spanwise directions. To analyze the effects of resolution two
grids of 903 and 603 cells were employed, having uniform spacing

in the e1 ande3-directions and geometrical progression is used in
the e2-direction to concentrate the grid towards the walls.

In Table 1 the parameters of the channel flow simulations are
presented—following standard practice Um

51/2*21
1 ( v̄1)d(x2 /d) is the mean velocity, Ret5utd/v the Re

number andCf5tw /1/2r̄Um
2 the skin-friction coefficient. These

are all in acceptable agreement with DNS and the experimental
data,@70#. The influence of the subgrid model onUm , Ret , and
Cf is small when the grid spacing in the near-wall region is below
abouty1,5, but this is impossible to maintain as Re increases.
When increasing Re without refining the grid this results in an
underprediction oftw and thus ofut andCf , that motivates the
use of wall models, which compensates for the lack of resolution
by incorporating more physics and particularly a correct value of
tw . At Ret5395 the mean streak spacingDl z

1 , is properly re-
solved and all simulations give results within 15% of the DNS
data. At Ret52030 and 10,000 the mean streak spacing is not
resolved, and the predicted mean streak spacing is found to be
between 2.0Dx3

1 and 2.5Dx3
1 , which is representative of the

smallest coherent structure that can be resolved. Considerable im-
provement ontw andCf is achieved by using the wall model.

In Fig. 5 typical flow features in the lower half of the channel
are shown in terms of vortex lines, contours of the streamwise
vorticity on side and bottom walls, and an isosurface of the second
invariant of the velocity gradientQ5 1/2 (iWi22iDi2). The re-
gions enclosed within these structures are thus vortical regions
with iWi.iDi . The location of a vortex line is given by the
equationdx/ds5vu/uv̄u, wheres is the distance along the vortex
line. This equation is integrated forx using a third-order Runge-
Kutta method, and second-order linear interpolation is used to
compute the vorticity from the grid points. By correlating iso-
surfaces ofQ with the velocity distribution close to the wall it is
found that vortices located above the low-speed streaks are repeat-
edly ejected away from the wall—as formerly found in experi-
ments and DNS/LES studies, which produces hairpin vortices
stretched by the ambient shear. It has been conjectured that in this
ejection mechanism vorticity, produced in the vicinity of the wall,
is convected into the boundary layer, making it turbulent. An in-
teresting observation, also observed in DNS, is that the hairpins
are asymmetric, with one leg~often the right leg! being stronger
than the other. Moreover, it is evident that the spanwise resolution
is more important for the coherent structure dynamics than the
streamwise resolution, whereas the wall-normal resolution is im-
portant to predict the correct wall shear stress, which, however,
also can be represented by a wall model. Although models based
on experiments or simulations have been proposed,@71–73#, the
interpretation of low and high-speed streaks and their relation
with the ejection mechanism are still not fully understood.

In Fig. 6 we show the mean-velocity profiles^v̄1& for the cases
reported in Table 1, where,̂•& denotes combined spanwise,

Table 1 Nominal characteristic parameters for fully developed channel flow

Grid Ret y1 Um /ut Cf Dl 3
1

DNS, @48# 25623160 395 ,1 17.47 6.55e203 100
MILES 603 (903) 390 ~394! 2–10 ~1–7! 17.4 ~17.7! 6.4e203 (6.6e203) 110~105!

MILES1WM 603 391 2–10 17.5 6.5e203 107
OEEVM 603 (903) 391 ~390! 2–10 ~1–7! 17.6 ~17.3! 6.7e203 (6.5e203) 106~113!

OEEVM1WM 603 (903) 393 ~394! 2–10 ~1–7! 17.2 ~17.5! 6.1e203 (6.3e203) 107~105!
EXP, @69# 2030
MILES 603 (903) 2048 ~2036! 1–10 ~1–7! 18.4 ~18.8! 4.6e203 (4.9e203) 225~146!

MILES1WM 603 2034 1–10 18.6 4.7e203 231
OEEVM 603 (903) 2045 ~2019! 6–14 ~3–10! 18.3 ~18.7! 4.3e203 (4.6e203) 249~136!

OEEVM1WM 603 (903) 2024 ~2041! 6–14 ~3–10! 18.4 ~18.6! 4.4e203 (4.8e203) 243~138!
10000

MILES1WM 603 10098 25–40 19.4 4.1e203 743
OEEVM1WM 603 10112 25–40 19.8 4.3e203 678
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streamwise and time averaging. For Ret5395 the^v̄1& profiles are
in very good agreement with each other as well as with the DNS
data, cf.@48,68#, and the expressionŝv1

1&5x2
1 ~for x2

1<5) and
^v1

1&5k21 ln(x2
1)1B ~for 5,x2

1,350), wherek50.4 and B
55.2, as included in Fig. 3~b!. Differences attributed to gridding
are small, and mainly limited to the buffer region (5,x2

1,50),
suggesting that the 603 grid is appropriate. For Ret52030 thê v̄1&
profiles show significant differences depending on how the wall
region is handled. Good agreement with experimental data and
analytical profiles is found when using a wall model~suffix WM
in legends! or when the grid is sufficiently refined (y1,3) to-
wards the walls, otherwise large errors occur betweeny1510 and
100 as a result of the inadequate spanwise and wall-normal reso-
lutions. Differences in̂ v̄1& due to explicit or implicit subgrid
models are usually small, provided enough resolution or appropri-
ate wall models are used. For Ret510,000 thê v̄1& profiles using
the wall model together with either OEEVM and MILES show
good agreement with the analytical profiles dispite the fact that the
first grid point on the 603 grid is at abouty1535. Beyond about
y1'350 a considerable fraction of the wake region is present in
the Ret510,000 profiles as expected.

In Fig. 7 we present the corresponding rms-velocity fluctuations
v̄1

rms normalized byut . In the core of the channel thev̄1
rms profiles

are self-similar with respect to Ret . However, in the near-wall
region, the peak values increase with increasing Ret as expected.
For Ret5395 the agreement between LES, MILES, and DNS is
satisfactory regardless of whether wall models are utilized or not.
The difference between LES/MILES and DNS is below 7%, with
the maximum error occuring close to the peaks~at x2

1'15) in
v̄1

rms. The difference between LES and MILES are generally small
which is supported by previous studies,@24#, using a wider range
of subgrid models. For Ret52030 the predictedv̄1

rms profiles are
broader than the measured profile,@68#, and the peaks occur at
x2

1'40, whereas in the data they occur atx2
1'20. This difference

is consistent with the LES results of Moin and Kim@74#, at Ret
5640, reporting widerv̄1

rms profiles, having peaks atx2
1'30. This

trend is further supported by the Ret510,000 case, having the
highest peaks values ofv̄1

rms occurring at approximatelyx2
1'60.

Figure 8 shows the resolved Reynolds stress profiles2^v18v28&,
wherev i85 v̄ i2^v̄ i& represents the resolved velocity fluctuations,
for all cases in Table 1. Based on evaluations of the shear stress

Fig. 5 Contours of streamwise vorticity projected onto the side and bottom
walls, vortex lines and iso-surfaces for QÄ1 for „a… MILES¿WM at 603 reso-
lution at Re tÄ2030 and „b… OEEVM¿WM at 903 resolution at Re tÄ2030
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2^v18v28&1(1/Ret)(]^v̄2&/]x2) it is clear that the flow is in equilib-
rium, with the shear stress balancing the downstream pressure
gradient in the regions away from the walls. The contribution of
the ~explicit or implicit! subgrid model is negligible far from the
walls; however, in the viscous sublayer and in the buffer layer, the
model contribution is comparatively large and differences be-
tween LES and MILES are found. In general, the~explicit or
implicit! subgrid models tend to increasetw in the wall proximity,
relative to a reference, whereas the wall model fixestw according
to the self-similar velocity distribution, i.e.,̂v1

1&5x2
1 for x2

1

<5 and^v1
1&5k21 ln(x2

1)1B for 5,x2
1,350. For all values of

Ret the best agreement with experimental or DNS data is obtained
with OEEVM1WM, although the differences decrease with de-
creasing Ret number, so that at Ret5395 virtually no differences
can be detected. The differences in Fig. 5 may be attributed to the
effects of the~explicit or implicit! model, i.e.,^B12& and the re-
solvable part2^v18v28&, implicitly affected byB. When the reso-
lution is inadequate to resolve the mean streak spacing much of
the dynamics in the near wall region is lost, which translates into
poor predictions of2^v18v28&. For the same resolution, but using a
wall model, the predictions are improved, suggesting that correct
prediction oftw is important for the overall flow and statistics.
Finally, it is worth noticing that the peak shear stress^v18v28&
1^B12& increases in magnitude and is closer to the wall as Ret

increase. Since the maximum of^v18v28&1^B12& is not the same
for each profile, it does not scale properly with the inner variables
in the Ret number range examined, Wei and Willmarth@75#, and
Comte-Bellot@76#.

6 Complex Flows
The main focus of the discussion in the previous sections has

been on issues of SGS modeling in relatively simple idealized
flows. Furthermore, boundary layer modeling issues have been
also raised in the context of near-wall flow modeling. Important
additional aspects of LES of high Re flows to be also addressed
relate to the issues of boundary condition~supergrid! modeling,
and overall computational model validation. From a practical
point of view, it is of outmost importance to consider how the
non-linear combination of all—algorithmic, physics-based, sub-
grid, and supergrid—aspects of the computational model affect
the simulation of complex systems for which detailed DNS-type
approaches are not possible and for which only limited experi-
mental data might be available at best.

6.1 Supergrid Modeling. Supergrid modeling issues to be
addressed in connection with numerical simulations involves~i!
establishing suitable physical boundary conditions~PBC! emulat-
ing those in the laboratory or in practical applications—which are
usually not known in sufficient detail, and ensuring the well-
posedness of the governing system of partial differential equa-
tions; and~ii ! specifying additional numerical boundary condi-
tions consistent with the unsteady flow equations and imposed
physical boundary conditions for closure of the discretized system
of equations.

Open boundary conditions are required when only a portion of
the flow can be investigated—as is frequently the case in labora-
tory experiments, where finite dimensions of the facilities are un-
avoidable. We must ensure that the presence of artificial open
boundaries adequately bounds the computational domain without
polluting the solution in a significant way, e.g.,@77–79#. From the
purely mathematical point of view, so-callednonreflectivebound-
ary conditions of various types have been proposed for hyperbolic
equations,@80#. The general idea is to use knowledge on the math-
ematical solution outside of the computational domain to define
conditions to minimize spurious reflections at artificial bound-
aries. These nonreflective conditions are generally non-local and
can be either totally absorbing or allow for somenatural reflec-
tions to occur. For example, natural reflections should be built into

the outflow boundary conditions in the simulation of subsonic
flows if we are to have emulation of feedback effects by which
events assumed to virtually occur outside of the computational
domain can effectively influence the flow inside.

Prescribing and enforcing wall boundary conditions presents
also practical challenges. We must deal with viscous boundary
layers that typically cannot be resolved by practical computational
grids, and improved wall turbulence models that will capture the
dominant details of the near-wall flowfield need to be developed.
An additional difficulty involves the thermal wall boundary con-
ditions that should be enforced in the simulations. Actual wall
conditions in the laboratory experiments are typically not reported
with sufficient detail, they lie in between the mathematically well-
defined isothermal and adiabatic conditions, and they have a cru-
cial role in determining the heat transport in the thermal boundary
layer. For example, temperature fluctuation levels in the near-wall
regions of isothermal and isoflux walls are known to be very
different from each other in the nonreactive case, e.g.,@81#, and
are likely to be much more pronounced when local temperature-
dependent viscous effects due to chemical exothermicity are
present.

Because of discretization, derivatives can only be approximated
at the boundaries, and in order to ensure the closure of the dis-
cretized system of equations additional numerical boundary con-
ditions need to be specified~NBC!. The standard procedure is to
introduce these new conditions by defining the behavior of the
dependent variables at one or more extra rows of guard cells sur-
rounding the computational domain. The NBC are clearly distinct
from the discretized representations of the PBC required to
uniquely define the solution of the nondiscretized fluid-dynamical
problem. For hyperbolic equations for example, it is well known
that thenth-order internal solution of the equations requires at
least (n-1)th-order additional NBC to preserve the formal spatial
accuracy of the calculations,@82#. The goal is to ensure that the
expected flow behavior outside the computational domain be
properly andconsistentlyimposed on the solution inside, a re-
quirement that is frequently overlooked. The consistency require-
ment demands that in the continuum limit the NBC be compatible
with the flow equations and PBC, in such a way that they do not
generate distinctly new boundary conditions thus over-specifying
the fluid dynamical problem. However, this guideline is not suffi-
cient to uniquely determine the NBC and some degree of ambi-
guity appears to be unavoidable, unless additional requirements
are imposed.

For hyperbolic equations, a relatively simple framework for BC
implementation can be based on focusing on the terms of the flow
equations containing derivatives with respect to the~local! direc-
tion perpendicular to the~solid or open! boundary,@83,84#. These
terms require special numerical treatment because they partially
depend on incoming information from outside of the computa-
tional domain. Other terms in the flow equations not containing
these derivatives, can be treated in the neighborhood of the
boundary in the same way as inside the computational domain.
Although limited due to its one-dimensional characteristic-
analysis basis,@77#, it offers a systematic approach,@78#, to the
problem of imposing PBC and NBC in practical simulations.

6.2 Flow Over a Backward Facing Step. An appropriate
case for overall LES model validation studies, for which experi-
mental data is available, is the combustion tunnel of Pitz and
Daily @85,86#. This rig consists of a rectilinear channel~of height
2h) followed by a contraction into one half of its height and
continued by the step expansion into the test section, see Fig. 9.
To examine the LES and MILES models we have undertaken
simulations at a step-height Re number of Reh522,000, with two
different inlet velocity profiles. The first of these is the uniform
profile with valueu0 , whereas the second is a flattened parabolic
profile with mean-valueu0 . The grids employed use 220332
364 nodes in the streamwise, spanwise and cross-stream direc-
tions, respectively. The cells are clustered towards the shear layer,
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developing from the step, and towards the upper and lower walls.
The first node is placed either aty1'3 or y1'15 in order to
illustrate the effects of the wall model,@87#. The simulations start
from rest and the unsteady flow evolves naturally. At the inlet,v̄
5ū(y)ex and¹ p̄•ex50, whereū(y) is the given profile andex is
the unit vector in the streamwise direction. At the outlet (¹ v̄)ex
50 and p̄5p0 , whereas at the upper and lower walls no-slip
conditions are enforced. Periodic conditions are used in the span-
wise direction. Table 2 presents the simulations and the values of
some key parameters such as the recirculation lengthl, and the
Strouhal number St5 f h/u0 .

Figure 10 shows a perspective view of the flow in terms of
isosurfaces of the second invariant of the velocity gradient tensor
Q5 1/2 (iW̄i2iD̄i), where W̄5 1/2 (¹ v̄2¹ v̄T) and D̄
5 1/2 (¹ v̄1¹ v̄T), at Q5u0 /h in order to identify the character-
istic vortical patterns and the evolution of the vortical structures.
The initial laminar shear layer breaks up from Kelvin-Helmholtz,
or KH, instabilities whereby the large coherent structures are
formed. The quasi-two-dimensional KH vortices that shed of the

step are influenced by merging, pairing and reconnection events as
they are convected downstream under influence of vortex stretch-
ing due to the three-dimensional effects. Downstream of the step,
for x,2h, the flow consists predominantly ofv̄z-vortices that are
gradually transformed into longitudinalv̄z-vortices that character-
ize the flow in the remaining part of the flow domain. An impe-
rious feature of this flow is the transformation of vorticity from
spanwisev̄z-vortices into longitudinalv̄z-vortices. Based on ani-
mations ofQ a possible scenario for the vortex dynamics can be
that spanwisev̄z-vortices are shed of the step, and between about
h and 3h downstream of the step these are exposed to helical
pairing, and a mixed pattern ofV and bigL-vortices is formed.
These vortices impinge on the lower wall and are either carried
away downstream and transformed into arcs, or become trapped
within the recirculation bubble. A consequence of the vortical flow
is that the growth of the vortical structures with downstream dis-

Fig. 6 Time-averaged „or mean … velocity profiles Š v̄ 1‹ normalized by the friction velocity u t versus the wall-normal distance at
RetÄ395 „blue …, RetÄ2030 „green …, and Re tÄ10,000 „red … for all channel flow cases reported in Table 1. Panel „a… represents outer
scaling whereas panel „b… represents inner scaling.

Fig. 7 Turbulent kinetic energy v̄ 1
rms , normalized by the fric-

tion velocity u t versus the wall-normal distance at Re tÄ395
„blue …, RetÄ2030 „green …, and Re tÄ10,000 „red … for all cases
reported in Table 1; outer scaling is used at the horizontal axis

Fig. 8 Resolved Reynolds stress profiles Šv 18v 28‹, normalized
by the friction velocity u t versus the wall-normal distance at
RetÄ395 „blue …, RetÄ2030 „green …, and Re tÄ10,000 „red … for all
cases reported in Table 1; outer scaling is used at the horizon-
tal axis
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tance from the step affects the recirculation region and the
spreading-rate of the top boundary of the shear layer into the
freestream.

Based on the statistics in Table 1, the length of the recirculation
bubble,l, and the Strouhal frequency, St, are well predicted. The
differences due to choice of inlet velocity profile are somewhat
larger than the differences due to subgrid model or the use of wall
models. This illustrates the importance of proper supergrid mod-
eling addressed earlier. In this specific case, no measurements
were made upstream of the step—a fact that notably complicates
the modeling, since proper inlet conditions have to be presumed.
As illustrated in Fig. 11, this may affect the results.

Figure 11 presents a comparison of the time-averaged stream-
wise velocity^v̄&x and its rms fluctuationsv̄ rms

x between LES with
OEEVM, MILES and experimental data,@85#. For the^v̄&x pro-
files, good agreement with the experimental data is obtained only
with the top-hat inflow velocity profile, with the flattened para-
bolic profile resulting in a too thick upper boundary layer. Fur-
thermore, the maximum reverse velocity is somewhat underpre-
dicted, i.e., 0.30u0 as compared to the experimental value of
0.33u0 . Eaton and Johnston@88#, report reverse velocities of
0.25u0 , and the higher value observed in the predictions and in
the experiments may be due to the lower aspect ratio or the effects
of wall. The difference between MILES and LES predictions~us-
ing the OEEVM subgrid model! is virtually marginal. Similar re-
sults ~in good agreement with experimental data! are obtained
when using the high wall-normal resolution and no wall model,
and when using the wall model in conjunction with the low wall-
normal resolution. However, the results are less satisfactory when
using the lower wall-normal resolution and no wall model~data
not shown!. Grid refinement,@87#, gives virtually no improvement
of the ^v̄&x profiles, with the exception of a small increase in the
peak reverse velocity. From thev̄ rms

x profiles regions of intense
turbulence are confined by the shear layer and spread as the shear
layer widens downstream. At reattachment the turbulence de-
creases, and the rms profiles begin to take on the characteristics of
fully developed turbulent channel flow. The position of the peak
rms fluctuation initially coincides with the centerline, but drops
towards the lower wall with downstream distance at the same time
as the profiles broadens. The peak values ofv̄ rms

x increase at first
due to the formation of large coherent structures, to stabilize
around 20% ofu0 , being in good agreement with experimental

Table 2 Nominal characteristic parameters for backward-
facing step flow

Grid SGS Model y1 l St

Exp, @86# — — — 7.3 0.23
Case I,

u(y)5u0

220332364 OEEVM 3 7.0 0.24

Case II,
u(y)5u0

220332364 OEEVM1WM 15 7.2 0.22

Case III,
u(y)5u0

220332364 MILES1WM 15 7.1 0.23

Case IV,
u(y)5 f (y)

220332364 OEEVM 3 6.8 0.25

Case V,
u(y)5 f (y)

220332364 OEEVM1WM 15 6.9 0.23

Case VI,
u(y)5 f (y)

220332364 MILES1WM 15 6.7 0.22

Fig. 9 Schematic of the Pitz-Daily backward-facing step configuration

Fig. 10 Visualization of the flowfield for the nonreacting case using contours of the
instantaneous streamwise velocity component at the centerplane and iso-surfaces
of the second invariant, Q, of the velocity gradient tensor
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data,@85#. The agreement between measured and predictedv̄ rms
x

profiles drops with distance from the step, an observation that can
be explained by the stretched grid used towards the end of the
domain.

7 Concluding Remarks
In conventional LES, explicit SGS models are introduced for

closure and to provide a mechanism by which dissipation of ki-
netic energy accumulated at high wavenumbers may occur. The
MILES approach provides a promising practical alternative to
conventional LES, involving the solution of the unfiltered NSE
with high-resolution locally monotone algorithms by which the
effects of the SGS flow physics on the GS flow are incorporated in
the functional reconstruction of the convective fluxes. By incor-
porating a sharp velocity gradient capturing capability operating at
the smallest resolved scales, MILES emulates~near the cutoff!,
the high wave number end of the inertial subrange region—
characterized by thin filaments of intense vorticity embedded in a
background of weak vorticity. A formal advantage of MILES is
that no commutation errors are involved, since it uses no explicit
filtering; this may, however, not be of practical consequence, since
commutation errors can be lumped together with the explicit sub-
grid models. Because of the intrinsically anisotropic nature of the
SGS modeling in MILES associated with the functional recon-
struction, with possibilities of concurrently handling flow and grid
anisotropies, we expect it may provide an optimal computational
framework for inhomogeneous high Re complex flows.

Although the history of MILES draws on analogies with the
development of shockcapturing schemes, the concept of MILES,
as developed here and in our earlier work,@23,24#, attempts to
embody a general computational procedure for solving the NSE
for high Re number flows as accurately as possible using built-in
SGS models. We have chosen to emphasize the overall modeling
aspects of LES based on the modified equations, which are rarely

examined in this context. Analysis based on the modified equa-
tions can be used to study how the explicit SGS model terms
compete with leading-order truncation errors resulting from the
discretization. Likewise, the analysis can be used to address the
extent to which the leading order truncation may provide an im-
plicit SGS model when suitable computational methods are used.
It is worth reiterating here that relying on arbitrary methods to
emulate the additional required damping to achieve numerical sta-
bility will not necessarily provide the smooth transition to SGS’s
ensuring the correct distribution of energy on the resolved scales
in general. We have used the modified-equations’ analysis to show
that a particular form of functional reconstruction—involving flux
limiters—can be consistently regarded as an implicitly imple-
mented LES approach, where choosing flux-limiters is effectively
similar to choosing an SGS model in conventional LES.

The practical challenge is to identify features that should be
built into the numerical methods, and the flux limiters in particu-
lar, to achieve desirable physical properties in the associated im-
plicit SGS modeling. Detailed properties of the implicit SGS
model are related to the flux limiterG, which in turn depends on
the specific features of the numerical scheme—such as monoto-
nicity, 11-contraction, and monotonicity preservation; we have il-
lustrated how the latter properties can directly affect their poten-
tial in the MILES context.

Our previous results from the forced@23# and decaying@24#
isotropic turbulence case show that~i! the influence of the~ex-
plicit or implicit! SGS model is important and~ii ! that fairly good
results can be obtained using both kinds of SGS models, provided
that the numerical methods used are sufficiently accurate and only
marginally affected by numerical diffusion and the Gibbs error.
These trends have been also confirmed for the wall bounded
~channel! flows investigated in the present and previous work, cf.
@24#. Because in applications involving turbulent flows near walls
much less universal properties are involved and characteristic

Fig. 11 First and second-order statistical moments of the streamwise velocity com-
ponent, Š v̄ ‹x and v̄ rms

x , respectively. Panels „a… to „c… show Š v̄ ‹x at x ÕhÄ1.0, 2.0, and
3.0, respectively, whereas panels „d… to „f … show v̄ rms

x at x ÕhÄ1.0, 2.0, and 3.0, respec-
tively. Legend: „s… experiments, †86‡, „ … MILES¿WM, „ … OEEVM¿WM and
„ " " " … OEEVM. Red „darker … lines represent simulations using the top-hat inlet
velocity profile, whereas blue „lighter … lines represent simulations using the flattened
parabolic inlet velocity profile.
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length scales of the most energetic eddies decrease, SGS models
capable of handling simultaneous flow and grid anisotropy such as
built in the MILES approach can be reasonably expected to pro-
vide an efficient computational procedure in this context. MILES
can reproduce the first and second-order statistical moments of the
velocity field almost as accurately as when using explicit, signifi-
cantly more-complex SGS models, and better than isotropic eddy
viscosity models—while being also very competitive computa-
tionally, @24#. We argue that this is due to the intrinsic nature of
the MILES model, in which a nonlinear tensorial eddy-viscosity
model is built into the algorithm, based on a carefully chosen
functional reconstruction of the convective terms.
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Implicit Turbulence Modeling for
High Reynolds Number Flows
Implicit turbulence modeling is the numerical simulation of high Reynolds fluid flow using
nonoscillatory finite volume (NFV) schemes without any explicit subgrid scale model.
Here we investigate the ability of a particular NFV scheme, MPDATA, to simulate decay-
ing turbulence in a triply periodic cube for a variety of viscosities, comparing our results
to analogous pseudo-spectral studies. In the regime of direct numerical simulation, MP-
DATA is shown to agree closely with the pseudo-spectral results. As viscosity is reduced,
the two model results diverge. We study the MPDATA results in the inviscid limit, using a
combination of mathematical analysis and computational experiment. We validate these
results as representing the turbulent flow in the limit of very high Reynolds number.
@DOI: 10.1115/1.1514210#

1 Introduction
There is a kind of magic2 about nonoscillatory methods for

numerical simulation of complex fluid flows. Beyond the obvious
benefits of avoiding unphysical oscillations by preserving positiv-
ity and/or monotonicity, and of ensuring nonlinear stability, high-
order upwind methods appear to correlate well with the underly-
ing physics, leading to simulations that are more physically
realizable.

As a recent and unexpected example of realizability, nonoscil-
latory methods have demonstrated the ability to simulate turbulent
flows without need for explicit subgrid scale models, a property
that we refer to as ‘‘implicit turbulence modeling.’’ This property
has been validated in direct comparisons with experimental data
and with high-resolution direct numerical simulation~DNS! for a
variety of flows, and for a variety of nonoscillatory algorithms
~see, for example,@2–5#! over the past ten years. In our own
research, we have employed the nonoscillatory algorithm Multi-
dimensional Positive Definite Advection Transport Algorithm
~MPDATA! see@6# and references therein, to model all-scale me-
teorological flows including atmospheric boundary layers,@7#,
gravity-wave dynamics,@8#, and global climate,@9#.

More recently, the beginnings of a theoretical framework has
been proposed for implicit turbulence modeling in@10#. These
authors derived a finite-scale~i.e., coarse-grained! version of the
pointwise Burgers’ equation—a version appropriate for describing
the dynamics of finite volumes of~Burgers’! fluid. They compared
this finite-scale equation to the MPDATA approximation of the
pointwise equation, and showed that MPDATA already accounts
for the finite-scale effects. Since each computational cell is a finite
volume, they rationalized that the success of MPDATA in model-
ing turbulent flows results from its accurate representation of the
coarse-grained equations of motion.

The theory in@10# and the computational examples that support
it are suggestive. However, there are significant differences be-
tween Burgers’ and Navier-Stokes equations. Perhaps the most
important of these is that the solutions of Burgers’ equation are

deterministic while those of Navier-Stokes are stochastic. This
difference may be readily appreciated by considering simulations
at two distinct resolutions. In the case of Burgers’ equation the
two solutions will be close, while for Navier-Stokes equations it is
only the statistics of the solutions that will be close,@11#.

In this paper, we extrapolate the finite-volume theory of@10# to
analyze nonoscillatory simulations of a turbulent flow governed
by three-dimensional Navier-Stokes equations. We compare MP-
DATA simulations of decaying turbulence in a triply periodic cube
with the pseudo-spectral results of Herring and Kerr@12#. For two
values of physical viscosity corresponding to direct numerical
simulations~DNS! where all dynamical scales are resolved, the
MPDATA and the pseudo-spectral solutions compare closely in all
integral measures.

We also compare simulations using zero viscosity. The pseudo-
spectral simulation, in this Euler equation limit of Navier-Stokes,
shows an enstrophy blowup at finite time. The MPDATA simula-
tion tracks the pseudo-spectral results for a while, but does not
show any blowup of enstrophy. The pseudo-spectral result is
unphysical—all physical flows exhibit viscous dissipation at some
finite length scale. In contrast, enstrophy in the MPDATA simula-
tion remains uniformly bounded, and the solution appears physi-
cally reasonable. However, the question remains whether the MP-
DATA simulation is the result of a well-posed physical problem,
and if so, what this problem is.

To address this question—the central issue of the paper—we
analyze the zero-viscosity MPDATA results by combining theoret-
ical arguments with computational experiments. In Section 3, we
derive a relation between the numerical energy spectra at different
resolutions. In Section 4, we validate this relation computation-
ally. A theoretical consequence is the existence of an asymptotic
spectrum in the continuum limit. For zero explicit viscosity, we
interpret the asymptotic spectrum as the high Reynolds number
~Re! limit of viscous flows,@13#. We elaborate, and then summa-
rize our conclusions in Section 5.

2 MPDATA: Properties and Implementation
The simulations presented in this paper all employed the

nonoscillatory fluid solver MPDATA. We would emphasize that
implicit turbulence modeling appears to be a property of all
nonoscillatory finite volume~NFV! schemes; however, MPDATA
does have some unique features. MPDATA was developed origi-
nally for applications in meteorology. Since it is likely unfamiliar

1On leave from the Institute of Geophysics, Warsaw University, Warsaw, Poland.
Contributed by the Fluids Engineering Division for publication in the JOURNAL

OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
Mar. 12, 2002; revised manuscript received May 29, 2002. Associate Editor: F. F.
Grinstein.

2‘‘Any significantly advanced technology is indistinguishable from magic.’’
Arthur C. Clarke’s third law of science@1#.
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to the aeronautics community, we take this opportunity to summa-
rize some of its features. The interested reader can find a compre-
hensive description of MPDATA in@6#, including both the under-
lying concepts and the details of implementation.

MPDATA in its basic form is sign preserving, but not monoto-
nicity preserving. For meteorological applications, we have found
that sign preservation is often sufficient and leads to a less diffu-
sive solution. MPDATA is fully second-order accurate and conser-
vative. A variety of options have been documented,@6#, that ex-
tend MPDATA to full monotonicity preservation, to third-order
accuracy, and to fields that do not preserve sign~of which the
most important is momentum!.

Unlike most NFV methods, MPDATA is not based on the idea
of flux limiting. Instead it is based more directly on upwinding. In
practical terms, the algorithm consists of a series of donor cell
steps; the first step provides a first-order accurate solution while
subsequent steps compensate higher-order errors as identified
from a modified equation analysis. One important consequence of
this approach is that MPDATA is fully multidimensional—i.e., has
no spatial splitting errors—which implies significantly reduced
mesh dependence.

MPDATA is a full fluid solver. In analyzing the truncation error
of approximations to the momentum equation, one finds error
terms that depend on the interaction of the advection with the
forcing terms, including the pressure gradient. In implementations
of NFV algorithms that treat advection separately from the forc-
ings, this error is uncompensated, reducing the order of accuracy
of the solution and potentially leading to oscillations and even
instability ~see@14#!. In MPDATA we compensate this error effec-
tively by integrating the forcing terms along a flow trajectory
rather than at a point.

MPDATA is implemented in the three-dimensional program
EULAG for simulating rotating, stratified flows in complex geom-
etries,@8,9#. The name EULAG alludes to the capability to solve
the fluid equations in either an Eulerian~flux form! or a Lagrang-
ian ~advective form! framework. The latter uses a semi-
Lagrangian algorithm in which an MPDATA-type scheme per-
forms as an interpolation routine. However all the simulations in
this paper use the Eulerian framework. EULAG can be run for
incompressible or anelastic fluids; in either case, we solve an el-
liptic equation for pressure using a preconditioned generalized
conjugate residual solver,@15#. EULAG is fully parallelized
using message-passing and runs efficiently on a variety of
platforms,@16#.

3 Theory
In this section, we summarize the theoretical results of@10# and

describe an extension to support our analysis.

3.1 Background. In @10#, the authors describe a rationale
for implicit turbulence modeling. Their analysis begins by deriv-
ing the modified equation for MPDATA applied to one-
dimensional Burgers’ equation. Among the third-order truncation
terms, there appears a nonlinear dispersive term of the form
Dx2uxuxx . The authors then construct the governing equation for
a finite volume of Burgers’ fluid. These equations are derived
from the point equations, but are different due to the nonlinearity
of the latter, a fact that has long been appreciated by theorists and
modelers studying turbulence. What is unexpected is that a
straightforward and justifiable derivation of the finite volume
equations leads directly to nonlinearly dispersive terms similar to
those in the MPDATA modified equation. The rationale for im-
plicit turbulence modeling then is the more accurate approxima-
tion of the finite-volume governing equations by MDPATA~and
more generally, by NFV algorithms!.

The finite scale Burgers’ equation merits further discussion. In
particular, one might be tempted to interpret the nonlinear disper-
sive terms as a model for the effects of the unresolved scales of
motion—i.e., as a subgrid scale stress. However a careful exami-

nation of the derivation shows that this is not the case, a point that
is emphasized by the authors. In fact, the finite-scale equation
governs the evolution of the volume-averaged velocity indepen-
dent of the details of the subgrid scale velocity field. In other
words, the nonlinear dispersive term regularizes the flow in much
the same way that artificial viscosity regularizes shocks in high-
speed flows~see@17# and @5# for a similar point of view!.

There is another, complementary point of view presented in
@10#. The finite scale equation can be considered as a model for
the measurements~experimental or computational! made by some
observer. Experimental devices and simulations both have finite
scales of length and time, implying that information about unre-
solved scales is lost and the measurements do not exactly corre-
spond to ‘‘the flow.’’ Since we are in a regime of classical physics,
we are not concerned that the measurement process alters the flow,
and so we should expect that the measurements accurately reflect
the resolved scales. In this sense, the finite-scale equation is a
better model of the observations than the point equation. One of
our principal results in Section 4 is to verify that the MPDATA
simulations do accurately reproduce the large scales of the
turbulence.

3.2 Extensions. The generalization of the analysis in@10# to
three-dimensional Navier-Stokes is beyond the scope of this pa-
per. Instead, we shall assume that the basic result of the Burgers’
equation analysis—that MPDATA accurately estimates the
volume-averaged velocity—remains true for more general equa-
tions. This simple and reasonable assumption will allow us to
predict the relationship of turbulent energy spectra produced at
different resolutions. The verification of this relationship then re-
inforces our understanding of the performance of MPDATA.

Consider a one-dimensional periodic domain of lengthL. A
measurable velocityu(x) can be expanded in a Fourier series:

u~x!5(
k50

` Fak cosS 2pkx

L D1bk sinS 2pkx

L D G . (1)

Now consider a small segment@x2Dx/2,x1Dx/2#. In a one-
dimensional simulation, this would represent a computational cell,
and Dx/L[1/N where N is the total number of cells. We now
compute the averaged componentū in this ‘‘cell’’:

ū~x![
1

Dx Ex2Dx/2

x1Dx/2

u~x8!dx8. (2)

An elementary calculation leads to the result

ū~x!5(
k50

` Fak cosS 2pkx

L D1bk sinS 2pkx

L D G f S pkDx

L D (3)

where the function

f ~X![
sinX

X
(4)

attenuates each of the spectral coefficients of the original velocity
in a wave number dependent fashion. The one-dimensional
volume-averaged energy associated withū can now be written as

Ē~k!5~ak
21bk

2! f 2S pkDx

L D5E~k! f 2S pkDx

L D . (5)

These calculations can be easily extended to three-dimensions;
however, using the anticipated isotropy of the velocity field, the
above result can be applied directly in our simulations. In fact we
have calculated the energy spectra shown later in Figs. 2–4 by
averaging the one-dimensional spectra calculated in each of the
three coordinate directions.
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Let us now identifyū as the vector of the three discrete values
of the velocity components in an MPDATA simulation. Equation
~5! can be used to estimate the underlying energy spectrumin
part—up to the finite wave number determined by the resolution
of the simulation. We term

E~k![
Ē~k!

f 2~pk/N!
(6)

the asymptotic spectrum. Furthermore, since the simulated spec-
trum at each resolution has the same asymptotic spectrum, we can
relate the energy spectral coefficients of two simulations at reso-
lutions N1 andN2

Ē1~k!

f 2~pk/N1!
5

Ē2~k!

f 2~pk/N2!
(7)

where this relation holds up to the largest wave number of the
more coarsely resolved simulation.

We close this section with these remarks about our result. First,
the derivation of Eqs.~6! and~7! does not depend on the form of
the governing equations, and are not specific to Navier-Stokes.
Second, these equations allow us to estimate an asymptotic spec-
trum, given a simulated spectrum at finite resolution, but do not
predict any universal form for this spectrum. Third, for small val-
ues of its argument, Eq.~6! implies convergence of the simulated
spectra to the asymptotic spectrum as 1/N2. Finally, we note that
related ideas of spectral deconvolution have been used for the
purpose of constructing explicit subgrid models, cf.@18–20#.

4 Analysis and Results
We will analyze the simulations of decaying turbulence of a

homogeneous incompressible fluid in a triply periodic cube—a
generic problem in turbulence studies. The assumed homogeneity
of the thermodynamics and the lack of near-wall effects focus
attention on the modeling of the convective derivativesu¹u in the
momentum equation. Our NFV experiments with MPDATA will
mirror the 2563 DNS and inviscid pseudo-spectral simulations of
Herring and Kerr@12#.

Figure 1 displays the numerical data for the evolution of enstro-
phy for three values of viscosity,n50.0500,n50.0125,3 andn50
m2 s21 ~as indicated!. Solid lines are for MPDATA experiments,
while the data from@12# are marked as circles. One striking result
in Fig. 1 is the remarkable agreement of the NFV and the pseudo-
spectral solutions for DNS~n.0!. This agreement is maintained
uniformly for all flow characteristics, including spectra~see@12#
for other diagnostics!. Traditionally, pseudo-spectral methods are
valued for their accuracy and have been considered the tool of
choice to study turbulent flows. Since all convergent methods be-
come accurate as the flow is fully resolved, one may wonder
whether this agreement is due to excess resolution. This is defi-
nitely not the case forn50.0125 where the Kolmogorov scale is
about one grid-interval~Kerr, personal communication! and the
energy dissipation is marginally resolved.

The n50 results expose the essential difference between the
pseudo-spectral and MPDATA approaches. Without viscous dissi-
pation, enstrophy blowup occurred in the pseudo-spectral solu-
tion. The rapid growth of enstrophy was accompanied by an en-
ergy buildup at the highest wave numbers; the spectral
calculations became unstable, and were terminated after;0.35 s,
@12#. Up to this point, the spectral and MPDATA results agree
closely. Beyond this point, MPDATA continues to produce a plau-
sible solution. However, it is not clear whether the MPDATA
simulation is physically realizable.

Based on the large-eddy simulations~LES! of boundary layers
in @7#, we interpret then50 MPDATA result as the finite-scale
representation of the Re→` limit of viscous flows. This contrasts
with the pseudo-spectral result, which atn50 represents the solu-
tion of the pointwise Euler equations where finite-scale effects
have been already discarded. To substantiate our interpretation,
we have compiled two convergence studies of the inviscid solu-
tion. The first study shows the convergence of the energy spectra
as a function of resolution for zero viscosity. The second study
shows the convergence of the energy spectra as a function of
viscosity.

3The initial Taylor microscale Reynolds number is 250, see Fig. 1~c! in @12#.

Fig. 1 Enstrophy history in pseudo-spectral and MPDATA simulations of isotro-
pic decaying turbulence. All simulations use the same resolution of 256 3 points.
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Figure 2 compares the energy spectra from MPDATA simula-
tions atn50 for a series of resolutions 323, 483, 643, 1283, and
2563, as indicated. The spectra follow each other closely at the
large scales of motion, but tend to separate at the smaller scales.
This separation is predicted theoretically in Section 3, which also
implies the existence of the unique asymptotic spectrum~Eq. 6!.
Figure 3 displays the asymptotic spectra generated from those
shown in Fig. 2. In the absence of truncation errors, all asymptotic
spectra should coincide for the resolved scales. Except for the
highest wave numbers, the discrepancies of the asymptotic spectra
are small compared to the separation of the simulated spectra in
Fig. 2. ~N.B., The simulated and asymptotic spectra show the
well-known bottleneck effect,@21#, which only affects the highest
resolved wave numbers. These data have been ignored while con-
structing the average asymptotic spectrum—i.e., the solid line in
Fig. 2.! This agreement indicates that the MPDATA results should
be interpreted as a finite-resolution projection of the continuum
limit. Note that the solid line in Fig. 2, showing the asymptotic
spectrum averaged over all five resolutions, estimates the con-
verged limit of the simulated spectra.

As remarked earlier, all physical flows have viscous dissipation.
Although the viscous scale lengths may be small compared to
finite resolution of a numerical model, they never vanish in the
continuum limit. To assess the effects of small but finite viscosity
we show in Fig. 4, the convergence of the asymptotic energy
spectra asn→0; these spectra are estimated from MPDATA simu-
lations at 2563 resolution. The results shown demonstrate that the
viscous spectra converge uniformly to the inviscid limit asn→0.
Taken together, our computations substantiate our contention that
the inviscid MPDATA runs can be interpreted as the finite-scale
representations of the Re→` limit of viscous flows.

5 Summary and Conclusions
In this paper, we have continued our study of the use of the

nonoscillatory finite volume scheme MPDATA to simulate turbu-

lent flow without need for any explicit subgrid model. We refer to
this property as implicit turbulence modeling. We began by com-
paring simulations of a turbulent flow using MPDATA to a
pseudo-spectral simulation. When the physical viscosity is large
enough so that all dynamical scales are well resolved, we have
shown that MPDATA accurately reproduces the flow predicted by
the pseudo-spectral model, thus validating the utility of this NFV
scheme for direct numerical simulation.

In the limit of vanishing physical viscosity, the pseudo-spectral
model predicts a enstrophy blowup in finite time, and the cessa-
tion of meaningful calculation after this point. In contrast, MP-
DATA does not predict any blowup of enstrophy and continues to
produce plausible solutions. Our principal result in this paper has
been to analyze these solutions, to demonstrate that they are in
fact realizable, and to identify them with a physical problem. Our
demonstration relies on mathematical analysis and a computa-
tional study of convergence in resolution and viscosity.

Our analytic result is derived in Section 3 and represents a
relationship between the energy spectra generated in simulations
at different resolutions. The results assume that the numerical al-
gorithm MPDATA accurately estimates the volume-averaged ve-
locity; this result has been demonstrated rigorously for the Bur-
gers’ equation in@10#. Our analytic result further implies the
existence of an ‘‘asymptotic’’ spectrum, representing the con-
tinuum limit, and verifies that at fixed wave number the conver-
gence rate goes like the inverse square of the resolution.

Our numerical results in Section 4 validate the analytic rela-
tions, and confirm the existence of a unique asymptotic energy
spectrum. We further showed a computational study of the con-
vergence of the asymptotic viscous spectra to the inviscid spec-
trum. This leads to our main conclusion, that the MPDATA simu-
lations with zero-explicit viscosity may correctly model turbulent
flow in a high Reynolds number limit.

Throughout this paper, we have emphasized that numerical
simulation and physical observation are both carried out at finite

Fig. 2 MPDATA simulated spectra for zero viscosity at 32 3, 483, 643, 1283, and 2563

resolutions
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scales. In creating a model for numerical simulation of high Rey-
nolds number flow, one is effectively considering the limit as two
different length scales become small. The first is the viscous scale,
sometimes termed the Kolmogorov scale. The second is the scale
of nonlinear effects~see Section 3! which is the scale of observa-

tion or, in the case of simulation, the size of the computational
cell. The latter is never negligible in a simulation—so the Euler
equations cannot be an adequate model for numerical simulation
of high Reynolds number flow—and the finite scale effects must
be taken into account. Based on the results presented, we surmise

Fig. 3 Asymptotic spectra for zero viscosity estimated from simulated spectra in Fig. 2

Fig. 4 Asymptotic spectra for finite viscosities
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that MPDATA ~and likely other NFV algorithms! accurately mod-
els coarse-grained solutions of three-dimensional Navier-Stokes
equations, and appears to be a valuable tool for large-eddy simu-
lation free of explicit subgrid-scale parameterization.
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Large-Eddy Simulation of
Supersonic Flat-Plate Boundary
Layers Using the Monotonically
Integrated Large-Eddy Simulation
(MILES) Technique
A supersonic flat-plate boundary layer at a Reynolds number of 23104 based on the
inflow boundary layer thickness is investigated at different Mach numbers~M52.88 and
4) using the monotonically integrated large-eddy simulation (MILES) technique. The in-
herent numerical dissipation is taken as an implicit subgrid scales (SGS) model to close
the Favre-filtered compressible Navier-Stokes (NS) equations. A finite volume method with
second-order accuracy in time and space is implemented for the solution of the Navier-
Stokes equations on an unstructured grid of tetrahedra. The heat transfer coefficient is
predicted by simulating both adiabatic and isothermal cases. The mean flowfield and
turbulent stresses are in good agreement with experiment. The relationship between the
predicted skin friction coefficient and heat transfer coefficient is in close agreement with
the Reynolds analogy factor. The variation of turbulent Prandtl number cross the bound-
ary layer falls within the experimental envelope. These are the first LES predictions
of adiabatic and isothermal supersonic flat plate boundary layers using the MILES
technique. @DOI: 10.1115/1.1516578#

Introduction
Important developments in the study of supersonic turbulent

boundary layer have been studied by theoretical@1–3#, experi-
mental@4–9#, and numerical works@10–24#. A significant number
of experimental investigations on supersonic turbulent boundary
layers have been performed that have greatly improved our
knowledge of the effects of compressibility on turbulence. Mea-
surement of turbulence quantities in this flow configuration is dif-
ficult and is restricted away from the near-wall region@4–6#. In
addition, the data collected in most experiments are limited to
basic turbulence quantities. Numerical methods include Reynolds-
averaged Navier-Stokes equations~RANS!, Large-eddy simula-
tion ~LES!, and direct numerical simulation~DNS!. RANS meth-
ods successfully predict the mean flowfield but do not resolve the
time-dependent large-scale motions of turbulence. For high Rey-
nolds number flow, DNS is very expensive to perform due to its
significant computational effort in resolving all scales of motion.
LES is a more practical approach for simulating the flows of en-
gineering importance, in which eddy scales smaller than the grid
spacing~subgrid scales~SGS!! are removed by low-pass filtering,
while their effects on the resolved flow are incorporated by an
SGS model.

Most work using LES has focused on incompressible flows
@25,26#. In 1986, Yoshizawa@27# first proposed an SGS model
suitable for slightly compressible turbulent flows. Additional stud-
ies of compressible LES have been made by other researchers
@10,28,29#. In general, compressible LES models can be divided
into two categories. The first is the traditional LES approach, in
which SGS models are explicitly introduced in the filtered Navier-
Stokes ~NS! equations. The second is based on monotonically
integrated large-eddy simulation~MILES! @30#, where the effects
of the SGS flow on the resolved flow are implicitly incorporated

into the functional reconstruction of the convective fluxes. From a
physical standpoint, strong inhomogeneous effects are present in
high Reynolds number supersonic shear flows, thus limiting the
usefulness of Smagorinsky-type isotropic eddy-viscosity models.
From a numerical point of view, the numerical discretization er-
rors have the possibility of masking the SGS stress and flux terms
by the leading-order truncation error. Researchers@31#, have ar-
gued that the effect of discretization errors on LES needs to be
studied further before proceeding with application to flows of en-
gineering interest. This became a main motivation of constructing
the MILES model. The MILES technique has been successfully
applied to free jets@32–34#, supersonic confined mixing layers
@35#, decaying supersonic homogeneous turbulent flow@36#, free
shear flow@37#, axisymmetric supersonic base flow@38#, free and
wall-bounded flows@39#, supersonic flat-plate boundary layer
@24#, supersonic expansion-compression corner@40#, and com-
pression corner@20,41,42#. This paper presents the simulation of
supersonic flat plate boundary at different Mach numbers and
Red52.03104 using the MILES method. Both adiabatic and iso-
thermal boundary conditions are implemented to compute the heat
transfer coefficient for each case with different Mach numbers.
The objective of this paper is to access the capability of LES to
accurately predict the flowfield and heat transfer process in this
supersonic flow. The paper introduces the governing equations
followed by the description of the numerical methodology and
grid configuration, then the results are shown in comparison with
experiment and conclusions are drawn.

Governing Equations
The governing equations are the spatially filtered compressible

Navier-Stokes equations. The spatial filtering removes the small-
scale~high-frequency! components of the fluid motion, while the
behavior of the three-dimensional time-dependent details of the
large-scale energy containing eddies is accurately simulated. The
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filtering operation introduces the subgrid scale~SGS! stresses and
heat transfer analogous to the Reynolds stress and turbulent heat
flux in RANS.

For an arbitrary functionF(xi ,t), the filtered variableF̄(xi ,t)
is defined as

F̄~xi ,t !5E
D
G~xi2j i ,D!F~j i ,t !dj i (1)

where G is the filter function, andD is a measure of the filter
width and is related to the computational mesh size@43#.

For our system of equations we use Favre-filtering with filtered
variableF̃(xi ,t) defined as

F̃~xi ,t !5
rF
r̄

. (2)

The filtered governing equations for the resolved scales in Carte-
sian tensor notation~using the Einstein notation! are

]r̄

]t
1

]r̄ũi

]xi

50 (3)

]r̄ũi

]t
1

]r̄ũi ũ j

]xj

52
] p̄

]xi

1
]Ti j

]xj

(4)

]r̄ẽ

]t
1

]

]xj

~ r̄ẽ1 p̄!ũ j5
]Hj

]xj

(5)

p̄5 r̄RT̃ (6)

wherexi represents the Cartesian coordinates (i 51,2,3), r̄ is the
mean density,ũi are the Cartesian components of the filtered ve-
locity, p̄ is the mean pressure,

Ti j 5t i j 1s̄ i j (7)

and

Hj5Qj1q̄ j1Ti j ũi (8)

are the total stress and the energy flux, respectively, andẽ is the
filtered total energy per unit mass

r̄ẽ5 r̄cvT̃1
1

2
r̄ũi ũi1 r̄k (9)

where r̄k is the subgrid scale turbulence kinetic energy per unit
volume

r̄k5
1

2
r̄~uiui˜ 2ũi ũi ! (10)

and q̄ j is the molecular heat flux

q̄ j5l~ T̃!
]T̃

]xj

, (11)

wherel(T̃) is the molecular thermal conductivity, and the mo-
lecular viscous stress tensors̄ i j is approximated@44#, by

s̄ i j 5m~ T̃!S 2
2

3

]ũk

]xk

d i j 1
]ũi

]xj

1
]ũ j

]xi
D (12)

wherem(T̃) is the molecular viscosity based on the Favre-filtered
static temperatureT̃.

The closure of the system of Eqs.~3! to ~6! requires specifica-
tion of appropriate initial and boundary conditions for the flow
variables and a model for the subgrid scale stress

t i j 52 r̄~uiuj
˜ 2ũi ũ j ! (13)

and heat flux

Qj52cpr̄~uj T̃2ũ j T̃!. (14)

The monotonically integrated large-eddy simulation technique
@30#, is used, wherein no explicit subgrid scale~SGS! model is
utilized to close the above equation system~i.e., t i j 50 andQj
50). The inherent numerical dissipation is taken as the implicit
SGS model.

Numerical Methodology
A finite volume method with second-order spatial and temporal

accuracy is implemented to solve the Favre-filtered compressible
Navier-Stokes equations on an unstructured grid of tetrahedra. We
simplify the notation by dropping the tildẽ and overbar̄ .

The governing equations may be written in finite volume form
for a control volumeV with surface]V as

d

dtEV
QdV1E

]V
EndA50 (15)

whereQ is the vector of dependent variables

Q55
r

ru
rv
rw
re

6 (16)

wheren is the outward unit normal on the surface. The flux tensor
E is

E5F i1Gj1Hk (17)

wherei, j , k are unit vectors in thex, y, andz directions, respec-
tively, and

F55
ru

ruu1p2Txx

rvu2Txy

rwu2Txx

reu1pu2Qx2bx

6 (18)

G55
rv

ruv2Txy

rvv1p2Tyy

rwv2Txx

rev1pv2Qy2by

6 (19)

H55
rw

ruw2Txz

rvw2Tyz

rww1p2Tzz

rew1pw2Qz2bz

6 (20)

where

bx5Txxu1Txyv1Txzw (21)

by5Txyu1Tyyv1Tyzw (22)

bz5Txzu1Tyzv1Tzzw (23)

and

Qx5Qx1q̄x (24)

Qy5Qy1q̄y (25)

Qz5Qz1q̄z , (26)

assuming that control volume is fixed.
The contribution of inviscid fluxes to Eq.~15! is
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E
dV

EinvndA5(
k51

4

T21MdA (27)

where k is the index of faces forming the tetrahedra. The flux
vector and rotation matrix are

M55
rû

rû21p
rûv̂
rûŵ

reû1pû
6 (28)

T215F 1 0 0 0 0

0 nx sx tx 0

0 ny sy ty 0

0 nz sz tz 0

0 0 0 0 1

G (29)

where

û5unx1vny1wnz

v̂5usx1vsy1wsz (30)

ŵ5utx1vty1wtz

where (nx ,ny ,nz) is the outwards unit normal on]V, (sx ,sy ,sz)
is an arbitrary unit normal on the surface of]V and (tx ,ty ,tz)
5n3s is the second unit normal on the surface]V.

The inviscid fluxes are computed using an exact one-
dimensional Riemann solver~the second-order Godunov’s method
@45#! applied normal to each face. The least-squares method@46#,
is used to reconstruct the values of each variable on each side of
the cell faces. The viscous fluxes and heat transfer flux at each cell
face are computed by the application of Gauss’ Theorem to the
control volume. The second-order accurate scheme is developed
by Knight @47#. The more details are given in Okong’o and Knight
@48#. The temporal integration is performed by using a second-
order accurate Runge-Kutta method@49#. Our LES code is paral-
lelized in spanwise direction using domain decomposition with
portable message passing interface model implementation
~Mpich!. One layer of the halo cells is attached to each side of
subdomain in spanwise direction, thus these two layers of the halo
cells are used for the data exchange with the adjacent subdomains
@42#. Since the computational domain is rectangular parallelepi-
ped, a simple one-dimensional decomposition is sufficient.

A compressible extension@24#, of the method of Lund et al.
@50# is used to generate the time-dependent inflow boundary con-
dition. The flowfield at a downstream station is rescaled and re-
introduced at the inflow boundary at every time-step. The distance
between the inflow boundary and downstream station is larger
than the streamwise correlation length@9#, in order to avoid un-
physical perturbations to the flow.

Grid Configuration. The computational domain isLx
514.8d, Ly53.4d, and Lz51.925d in streamwise, transverse,
and spanwise directions, respectively. The reference quantities for
nondimensionalization are the incoming boundary layer thickness
d, velocityU` , densityr` , static temperatureT` , and molecular
viscosity m` ~where the subscript̀ denotes the freestream con-
dition!. The unstructured grid is utilized to access its adaptation
ability of concentrating cells in the viscous sublayer to handle
complex geometries. The grid resolution near the wall is evaluated
in terms of Dx1, Dy1, and Dz1, where Dx15Dx/h, Dy1

5Dy/h, andDz15Dz/h. The inner length scale ish5nw /ut ,
wherenw is the kinematic viscosity at the wall,ut5Atw /rw is the
friction velocity, tw is the wall shear stress, andrw is the density
at the wall. Before we proceed with the discussion about the grid
resolution, we first describe how to obtainh in our cases.

The theoretical value of the friction velocityut for a supersonic
flat plate boundary is obtained from the combined Law of the Wall
and Wake evaluated aty5d

UVD

ut

5
1

k
lnS y

ut

nw
D 1C1

2)

k
sin2S p

2

y

d D (31)

where

UVD5
U`

A
H sin21F 2A2S U

U`
D 2B

AB214A2
D 1sin21F B

AB214A2G J
(32)

nw5n`S Tw

T`
D 11v

(33)

A5S g21

2
PrtmM`

2
T`

Tw
D 1/2

(34)

B5
Taw

Tw

21 (35)

Taw5T`F11
~g21!

2
PrtmM`

2 G (36)

wherek50.4 is von Karman’s constant,C55.1, the wake param-
eter) is 0.12 at Red523104, the exponentv is 0.76, the mean
turbulent Prandtl number Prtm is 0.89 and the ratio of specific
heatsg is 1.4. The wall temperatureTw is fixed at 10% above the
theoretical adiabatic temperatureTaw for the isothermal boundary.
In the computation,ut andnw are obtained fromut5Atw /rw and
nw5n`(Tw /T`)11v, respectively.

The grid refinement study for the supersonic flat-plate boundary
layer performed by Urbin@24# indicates thatDx1518, Dy1

51.5, andDz156.5 at the wall is adequate for LES. The varia-
tion of Mach number and the different temperature boundary con-
dition have an effect onh, and therefore onDx1, Dy1, andDz1.
At the same Mach number, the wall temperature for the isothermal
case is 10% higher than that for the adiabatic case, leading to a
largerh and the smallerDx1 if keeping the sameDx. However,
this effect is very small in our case, therefore we keep the same
Dx, Dy, and Dz for the different temperature condition at the
same Mach number. The grid details are shown in Table 1, where
A and I stand for the adiabatic and isothermal cases, respectively
and the number followed indicates the Mach number. TheDx1,
Dy1, andDz1 are measured at the wall and theDx, Dy, andDz
are measured aty/d51.0. The grid is uniform in thex and z
directions and stretched in they direction with about 23 layers of
tetrahedra in the boundary layer for each case. The total number
of the cells is about 1.4 million compared to about 2.3 million of
the cells for a structured grid.

Results
The LES of flat-plate boundary layer at different Mach numbers

with adiabatic and isothermal boundary conditions is performed.

Table 1 Details of grid

A2.88 I2.88 A4 I4

Dx1 20 18 12 11
Dy1 1.8 1.6 1.8 1.6
Dz1 7 6.4 4 3.4
Dx/d 0.1 0.1 0.1 0.1
Dy/d 0.18 0.18 0.18 0.18
Dz/d 0.034 0.034 0.034 0.034
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First, the mean quantities and turbulence stresses are presented in
comparison with the available experiment@51–55#, and DNS
@56#. Second, the heat transfer character is presented in compari-
son with the experiment in@57# and the Reynolds analogy.

Mean Flowfield and Turbulence Feature. The mean quan-
tities are averaged in time and in the spanwise direction and are
denoted aŝf &. The time-averaging period is set to three times the
flow-through time, where one flow-through time is defined as the
time for the freestream flow to traverse the computational domain.
The averaging is performed once the initial transient has decayed
~i.e., after four flow-through times!. The results are all shown at
the recycle position (x511.88d). The initial condition for Mach 4
cases is extracted from the Mach 2.88 flowfield, therefore seven
flow-through times is performed before starting the time-
averaging.

The mean streamwise velocity profiles using the Van Driest
transformation are plotted in Fig. 1 and Fig. 2~whereut is ob-

tained from the simulation!. Good agreement is shown with the
viscous sublayer linear approximationUVD /ut5y1 and Law of
the Wall formulated in~31!.

The mean velocity profiles shown in Fig. 3 and Fig. 4 exhibit
virtually identical distributions for adiabatic and isothermal cases
and show good agreement with the experiment@53,58#. The mean
temperature profile in Fig. 5 and Fig. 6 display a higher tempera-
ture distribution for the isothermal case with the wall temperature
higher than the adiabatic and experiment data@58#, which are also
obtained at the adiabatic boundary condition. The difference is
expected since the wall temperature for the isothermal case is
fixed at 10% higher than the adiabatic case.

The discrepancies between Mach 4 cases and experiments in
Fig. 4 and Fig. 6 are due to the effects of Mach number and
Reynolds number. The Reynolds number in the simulation is one
magnitude lower than experiments due to the significant compu-
tation cost in LES. The outer portion of the velocity profiles in

Fig. 1 Van Driest velocity at MÄ2.88

Fig. 2 Van Driest velocity at MÄ4

Fig. 3 Mean streamwise velocity at MÄ2.88

Fig. 4 Mean streamwise velocity at MÄ4
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Fig. 4 is in good agreement with experiment since this portion is
not sensitive to the Reynolds number. The discrepancy in the inner
portion is due to the effect of the Reynolds number. The effect of
the Mach number is observed in Fig. 6, which can be explained
using Crocco’s relationship between the mean temperature and
mean velocity profiles

T

T`

5
Tw

T`

1
Taw2Tw

T`

U

U`

2r
g21

2
M`

2 S U

U`
D 2

(37)

wherer is the recovery factor defined as

r 5
Tr2T`

T02T`

(38)

whereTr is the adiabatic or recovery temperature andT0 is the
freestream stagnation temperature. For the adiabatic case, Eq.~37!
becomes

T

T`

5
Tw

T`

2r
g21

2
M`

2 S U

U`
D 2

. (39)

Equations~37! and~39! show the trend that under the same mean
velocity distribution, the mean temperature decreases with in-
creasing Mach number, leading to the discrepancy between the
calculation and experiment in the outer portion of the mean tem-
perature profiles in Fig. 6. The discrepancy in the inner portion is
mainly due to the effect of the Reynolds number.

The streamwise Reynolds stresses shown in Fig. 7 and Fig. 8
are compared with the experiments@51–55#, and DNS@56#. The
experimental range provided by Zheltovodov and Yakovlev@53#
was obtained for Mach number range of 1.74–9.4. The distribu-
tions for the adiabatic and isothermal cases are very similar except

Fig. 5 Mean temperature at MÄ2.88

Fig. 6 Mean temperature at MÄ4

Fig. 7 Streamwise Reynolds stress at MÄ2.88

Fig. 8 Streamwise Reynolds stress at MÄ4
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close to the wall. The good agreement is shown in the outer por-
tion of the boundary layer (y/d.0.2). The peak in the near-wall
region (y/d,0.2) is supported by experimental data by Konrad
@54# and the DNS result@56#. The Reynolds shear stresses dis-
played in Fig. 9 and Fig. 10 also show the good agreement. The
Reynolds stresses as normalized are insensitive to the Reynolds
number@9#.

Heat Transfer. The capability of our LES method to accu-
rately predict the heat transfer in the flat-plate boundary layer is
evaluated. The Reynolds analogy relates the skin friction coeffi-
cientCf and heat transfer coefficientCh by the Prandtl number as
follows:

2Ch

Cf

5
1

Prtm
(40)

whereCh andCf are written as

Ch5
qw

r`U`cp~Tw2Taw!
(41)

Cf5
tw

1

2
r`U`

2

(42)

wherecp is the specific heat at constant pressure. The wall heat
flux (qw) and skin friction (tw) are obtained from the isothermal
case and the adiabatic wall temperature (Taw) is calculated from
the adiabatic case. The wall heat flux is

qw52l
]T

]y U
w

(43)

and the wall shear stress is

tw5mw

]u

]y U
w

. (44)

The wall temperatureTw is fixed at Tw51.1Taw , where
the empirical adiabatic wall temperatureTaw5@11(g
21)/2PrtmM`

2 #T` . All the predicted results are listed in Table 2,
where the wall temperature for the isothermal case is fixed. The
comparison with experiment is shown in Table 3. The experimen-
tal adiabatic wall temperature is computed fromTaw5@11(g
21)/2PrtmM`

2 #T` . The computed mean turbulent Prandtl number
from ~40! shows good agreement with experiment value of 0.89,
indicating the consistency of LES results with the Reynolds
analogy.

The turbulent Prandtl number changes across the boundary
layer. Simpson et al.@57# have established the uncertainty enve-
lope of the turbulent Prandtl number for incompressible zero-
pressure-gradient turbulent boundaries. The experimental predic-
tions by Meier and Rotta@59# at Mach number up to 4.5 at the
wall and Horstman and Owen@60# at M57.2 and cooled wall
conditions fall into this uncertainty envelope. According to the
eddy viscosity hypothesis, the turbulent stress and heat flux can be
expressed as

Fig. 9 Reynolds shear stress at MÄ2.88

Fig. 10 Reynolds shear stress at MÄ4

Table 2 LES predictions

Name Tw ÕT` Cf Ch

A2.88 2.51 2.4431023 0
I2.88 2.72 2.3231023 1.2731023

A4 3.95 1.9731023 0
I4 4.23 2.0031023 1.2431023

Table 3 Comparison of LES and experiment

Cases Name LES Experiment Error

Mach52.88 Taw /T` 2.51 2.549 1.5%
Cf 2.3231023 2.5631023 9.4%
Ch 1.2731023 1.4431023 11.8%

2Ch /Cf 1/0.91 1/0.89 2.2%
Prtm 0.91 0.89 2.2%

Mach54.0 Taw /T` 3.95 3.848 2.6%
Cf 2.031023 1.2231023 7.8%
Ch 1.2431023 1.2231023 1.6%

2Ch /Cf 1/0.81 1/0.89 9.9%
Prtm 0.81 0.89 9.0%

Note:
ExperimentalTaw from Eq. ~36!
ExperimentalCf from Eqs.~31!, ~32!, and~42!
ExperimentalCh from Eq. ~40!
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where the bar̄ denotes the filtered flow variables and the tilde˜
denotes the Favre-averaged filter flow variables. The local turbu-
lent Prandtl number (Prt) for a two-dimensional boundary layer
can be derived from the above two equations as

Prt5

]T̃

]y
ru8v8

]ũ

]y
rT8v8

. (47)

The calculated turbulent Prandtl number profile is shown com-
pared with the experimental range in Fig. 11. The Prandtl number
reaches the maximum at the wall and starts to decrease away from
the wall. In the outer portion of boundary layer, the fluctuation of
Prandtl number is relatively greater than the inner portion, which
is consistent with the experimental trend.

Conclusions
The first LES predictions of adiabatic and isothermal super-

sonic flat-plate boundary layer using MILES are presented. An
LES of an adiabatic and an isothermal supersonic flat-plate
boundary layer at Red523104 and Mach 2.88 and 4 has been
performed. The computed flowfield is in good agreement with
experiment. The relationship between the computed heat transfer
coefficient and skin friction coefficient obeys the Reynolds anal-
ogy. The variation of turbulent Prandtl number cross the boundary
layer is consistent with the experimental trend.
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Computing Blunt Body Flows
on Coarse Grids
Using Vorticity Confinement
Over the last few years, a new flow computational methodology, vorticity confinement, has
been shown to be very effective in treating concentrated vortical regions. These include
thin vortex filaments which can be numerically convected over arbitrary distances on
coarse Eulerian grids, while requiring only;2 grid cells across their cross section. They
also include boundary layers on surfaces ‘‘immersed’’ in nonconforming uniform Carte-
sian grids, with no requirement for grid refinement or complex logic near the surface. In
this paper we use vorticity confinement to treat flow over blunt bodies, including attached
and separating boundary layers, and resulting turbulent wakes. In the wake it serves as a
new, simple effective large-eddy simulation (LES). The same basic idea is applied to all of
these features: At the smallest scales (;2 cells) the vortical structures are captured and
treated, effectively, as solitary waves that are solutions of nonlinear discrete equations on
the grid. The method does not attempt to accurately discretize the Euler/Navier-Stokes
partial differential equations (pde’s) for these small scales, but, rather, serves as an
implicit, nonlinear model of the structures, directly on the grid. The method also allows
the boundary layer to be effectively ‘‘captured.’’ In the turbulent wake, where there are
many scales, small structures represent an effective small scale energy sink. However, they
do not have the unphysical spreading due to numerical diffusion at these scales, which is
present in conventional computational methods. The basic modeling idea is similar to that
used in shock capturing, where intrinsically discrete equations are satisfied in thin, mod-
eled regions. It is argued that, for realistic high Reynolds number flows, this direct,
grid-based modeling approach is much more effective than first formulating model pde’s
for the small scale, turbulent vortical regions and then discretizing them. Results are
presented for three-dimensional flows over round and square cylinders and a realistic
helicopter landing ship. Comparisons with experimental data are given. Finally, a new
simpler formulation of vorticity confinement is given together with a related formulation
for confinement of passive scalar fields.@DOI: 10.1115/1.1517573#

1 Introduction
Many real-world flows are characterized by regions of concen-

trated vorticity. These are typically turbulent at realistic Reynolds
numbers and can convect over long distances, either as thin vortex
filaments or blunt body wakes containing small-scale vortical
structures. Also, boundary layers are typically thin, turbulent vor-
tical structures near solid surfaces. Even though the Navier-Stokes
equations apply to these flows, it is not feasible to solve them on
foreseeable computers due to the ever-present small scales. As a
result, conventional computational fluid dynamics~CFD! methods
involve first formulating the partial differential equations~pde’s!
that model these turbulent regions. These pde’s are then dis-
cretized in the turbulent regions and then solved. This typically
requires large computer resources and difficult grid generation.
The problem is that resolving even the model pde’s requires very
fine computational grids, which must conform to the surface for
the boundary layer. Further, these methods typically dissipate thin
filaments and vortical structures in the wake as they convect. This
is true even if on the order of ten grid points are devoted to the
cross section of each structure and complex, high order discreti-
zations are used. The problem is intrinsic to the discretization of
the convective terms and made worse by the use of dissipative
terms to model the turbulent effects. Finally, even if the model
pde’sare resolved, the result is, of course, still a model approxi-
mation of the turbulent flow.

In this paper, we describe an entirely new CFD methodology
where very different numerical models are used for small-scale
vortical regions. Instead of first hypothesizing a turbulence model
based on pde’s and then trying to accurately discretize and resolve
them, we model the internal structure of the vortical regionsdi-
rectlyon the grid using generalized nonlineardifferenceequations,
rather than using finite difference discretizations of partial differ-
ential equations that attempt to approximately resolve the model
equations. This approach allows treatment of small vortical struc-
tures as objects spread over only one to two grid cells on coarse,
essentially uniform Cartesian computational grids. For the
smooth, large-scale components of the flow, the method acts like
conventional CFD ones with conventional discretization of the
pde’s.

These ideas are implemented in the methodology termedvor-
ticity confinement. Although new for vortical regions, these ideas
are old for the treatment of shocks, starting with Von Neumann
and Richtmyer@1#, Lax @2#, and others. There, as is well known,
shocks that are treated as thin regions spread over a few grid cells
that obey discrete, grid-based nonlinear model equations that con-
serve certain quantities. This approach has been shown to be more
effective than trying to discretize and solve the applicable Navier-
Stokes pde’s in those thin regions. One difference, however, is
that with shocks, unlike vortical regions, characteristics slope in-
ward toward the shock. As a result, the modeling is simpler than
that with vortical structures. One of the first confinement-type
schemes for contact discontinuities, where, unlike shocks, physi-
cal characteristics do not help, was developed by Harten@3#, but
was specialized to one-dimensional compressible flow.

Contributed by the Fluids Engineering Division for publication in the JOURNAL
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
March 21, 2002; revised manuscript received May 3, 2002. Associate Editor: G. E.
Karniadakis.

876 Õ Vol. 124, DECEMBER 2002 Copyright © 2002 by ASME Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



It is interesting to compare the vorticity confinement approach
to other schemes.

• The main difference is that there is a stable, overallnegative
diffusion at scales larger than;2 grid cells. The effect of this is
very small at the larger scales but very important at the smaller
scales. This is necessary to maintain structures as compact, stable
solitary waves.

• Methods that merely cancel any added numerical diffusion in
the convection part will not do this, since then these structures
will still distort when they convect through regions of nonuniform
flow. Distorted vortex cores will then develop large multipole mo-
ments in the outer, induced flow and not capture the physical
characteristics of rolling up vortices. This feature sets confinement
apart from methods that add numerical terms to make the total
effective diffusion small~but still positive! for the larger scales
and do not effectively capture the small scales of the order of a
grid cell.

• It has been explained above how the confinement method is
very different from conventional large-eddy simulation~LES!
schemes that use pde-based turbulence models that must be
resolved.

• The idea of using the difference equations themselves as im-
plicit small-scale models is used in other approaches such as
‘‘MILES’’ @4#. However, usually a stabilizing positive diffusion
results from these schemes, which, as explained above, is different
from our approach.

Many results have been obtained in recent years using vorticity
confinement,@5–24#. Lohner has a very good short review of this
work, @20#. Initial results were for isolated, convecting vortex fila-
ments,@15–17#. Then, vortices convecting past airfoils and wings
~blade—vortex interactions! were treated,@14#. In this early study,
unlike in our current studies, near the surface a surface-fitted grid
was used for the wing with surface grid refinement to resolve the
actual Navier-Stokes equations, since only a low Reynolds num-
ber, laminar case was treated. To accommodate this grid refine-
ment with vorticity confinement, the parameter specifying the
strength of the vorticity confinement term~«! was made to be
proportional to grid size so that it automatically vanished in the
fine-grid boundary layer region, but was able to confine the con-
vecting vortex in the external, coarse-grid region. Our current
studies, like those described in this paper, involve surfaces ‘‘im-
mersed’’ in uniform, nonconforming grids with no grid refinement
and use a constant value for«.

Recently, vorticity confinement has been used together with
unstructured grids,@20,21#. When using these grids, which have
rapidly changing cell sizes, care must be taken not only that«
varies properly with cell size, but also that the confinement cor-
rection does not extend beyond the vortex core due to numerical
artifacts of the implementation. This property is true in the con-
tinuum limit, as shown in the description of Section 2, and should
be preserved in the discretization. If the correctiondoesextend
beyond the vortex, then it could erroneously affect surface pres-
sure if a vortex is passing near a surface. This could be important,
for example, for delta wings,@20#, and similar cases, where vor-
tices convect near surfaces. In fact, for delta wings, it is well
known that there is a feeding sheet from the leading edge causing
the vortex to grow in strength as it convects and causing the
characteristics to point towards it. In such cases, for a reasonable
grid, confinement is not really needed~until the vortex convects
past the trailing edge!. If confinement is used correctly, however,
it should not change the nearby pressure on the surface even in
these cases for high Reynolds number flow. Finally, in low Rey-
nolds number viscous flow cases where laminar flow occurs, the
proper Navier-Stokes equations should, of course, be used, since
the vortical scales are then not small and there is no need to
discretize model equations for small scales.

An important issue in CFD is always grid dependence—
whether the basic pde’s are adequately resolved. One of the goals

of vorticity confinement is to remove some of this dependence.
The basic idea is that the smallest resolved structures can be only
one or two grid cells wide, and are defined directly on the grid.
Thus there are no unknown unresolved structures with uncon-
trolled numerical errors. These small structures can be controlled
and can also be larger than the minimum size, by varying a simple
parameter. The larger scales are resolved, as in conventional CFD.

In this paper, vorticity confinement is applied to a series of
blunt bodies, a circular and a square cylinder, and a realistic heli-
copter landing ship. In the cylinder cases, for which unsteady
experimental results are available, comparison is made. The ship
case demonstrates the ability of vorticity confinement to preserve
thin, concentrated vortical structures over long distances. Also ve-
locity and vortex trajectory computations are shown to agree well
with experimental results. All cases were run on grids much
coarser than those required by conventional CFD methods and did
not require body-conforming grid generation or refinement near
the surfaces.

As stated, the cases computed all involve solid surfaces ‘‘im-
mersed’’ in uniform Cartesian grids. Vorticity confinement allows
us to do this in a very simple way and to use no-slip boundary
conditions with a simple, implicit boundary layer model, even
though the grid is coarse.

First, the surface is represented implicitly by a smooth ‘‘level
set’’ function ‘‘F,’’ defined at each grid point. This is just the
~signed! distance from each grid point to the nearest point on the
surface—positive outside, negative inside. Then, each time-step
during the solution any velocities added by the solver in the inte-
rior are set to zero. This results in a concentrated vortical region
along the surface. If we only had a conventional CFD solver this
vorticity would quickly convect and diffuse away from the surface
regions, destroying the accuracy of the outer solution. However,
we use vorticity confinement nearF50 to confine vorticity to one
to two grid cells along the surface when it is attached. The simple
boundary layer can still separate, however, especially at edges and
in regions of strong adverse pressure.

2 Vorticity Confinement
Vorticity confinement can be implemented in a pre-existing

flow solver, for both incompressible and compressible flow, by
adding a pair of terms to the discretized momentum conservation
equations,@13#.

For general unsteady incompressible flows, the governing equa-
tions with the vorticity confinement term are discretizations of the
continuity equation and the momentum equations, with added
terms:

¹•q50 (2.0.1)

] tq52~q•¹!q2
1

r
¹p1@m¹2q2«s# (2.0.2)

whereq is the velocity vector,p is the pressure,r is the density,
andm is a diffusion coefficient that includes numerical effects~we
assume physical diffusion is much smaller!. For the last term,«s,
« is a numerical coefficient that, together withm, controls the size
and time scales of the convecting vortical regions or vortical
boundary layers. For this reason, we refer to the two terms in the
brackets as ‘‘confinement terms.’’

It is important to realize that thepair of the terms, positive
diffusion and ‘‘contraction,’’ together create confined structures.
Unless the convection operator has its own diffusion, if there is no
positive diffusion term it is difficult to get stable solutions, which
occur when the two terms are balanced. This has been shown by
extensive numerical experience, by closed-form discrete solutions
for passive scalars~without convection! and by exact closed-form
solutions of related partial differential equations for the original
vorticity confinement formulation, where the confined length scale
is m/«, @19#.
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There are many possible forms for the second confinement
term. First, the original one used in this and earlier studies will be
described. Then, a new more elegant, simpler form will be de-
scribed, together with a simple demonstration.

2.1 Original Form.

s5n̂3v (2.1.1)

where

n̂5¹h/u¹hu (2.1.2)

the vorticity vector is given by

v5¹3q (2.1.3)

and

h5uvu. (2.1.4)

In general, for boundary layers and convecting vortex filaments,
computed flow fieldsexternalto the vortical regions are not sen-
sitive to the parameters« andm over a wide range of values. For
example, the flow outside an axisymmetric two-dimensional vor-
tex core is independent of the vortical distribution, and hence does
not depend on« and m as long as the core is thin. Hence, the
issues involved in setting them are similar to those involved in
setting numerical parameters in other standard computational fluid
dynamics schemes, such as artificial dissipation in many conven-
tional compressible solvers. There, the flow outside one-
dimensional captured shock regions also does not depend on the
exact internal structure, as long as it is thin. For wake flows,« can
be used to approximately simulate finite Reynolds number effects,
since it controls the intensity of the small vortical scales.

An important feature of the vorticity confinement method is
that the confinement terms are nonzero only in the vortical re-
gions, since both the diffusion term and the anti-diffusion term
vanish outside those regions~care has to be taken in the numerical
implementation to preserve this feature!.

Another important feature concerns the total change induced by
the confinement correction in mass, vorticity and momentum, in-
tegrated over a cross section of a convecting vortex. It can be
shown, @15,17#, that mass is conserved because of the pressure
projection step in the solver and vorticity is explicitly conserved
because of the vanishing of the correction outside the vortical
regions. Momentum is almost exactly conserved. An extension of
the original method,@10#, explicitly conserves the momentum.
The new formulation, described below in Section 2.2, also explic-
itly conserves momentum in a simpler way.

It should be mentioned that the above pde form for the confine-
ment cannot, of course, be said to be resolved since vortices are
captured in only a few grid cells. Accordingly, we can only say
that the pde form is only used tomotivatethe final discrete form
and that a large body of numerical evidence has been given that
the terms result in confined vortices. The new formulation de-
scribed below, on the other hand, allows an intrinsically discrete
analysis.

2.2 New Vorticity Confinement Formulation. Because of
the above issue concerning the pde form and that additional cor-
rections must be added to make it explicitly conserve momentum,
a new, simpler formulation that does not have these problems has
been developed. This new, intrinsically discrete formulation is
presented in this section.

A more detailed description is presented in@25#. First, a formu-
lation for scalar confinement is given. Then, a velocity-based vor-
ticity confinement correction is given that reduces to the scalar
confinement in terms of vorticity when the curl is taken.

The scalar formulation presented here is related to that pre-
sented in@13# in one dimension. In this section no convection is
used, only the two confinement terms, so that the behavior can be
seen more clearly. Excellent results are found with convection in
@25#.

We start with an iteration for a scalarf. This tests the use of the
method for passive scalar convection in the simpler zero velocity
limit.

fn115fn1m¹2fn2«¹2Fn (2.2.1)

where

Fn5F(
l

Cl~f̃ l
n!21

(
l

Cl

G 21

(2.2.2)

f̃ l
n5uf l

nu1d (2.2.3)

where the sum is over a set of grid nodes near and including the
node whereF is computed, andd is a small positive constant
(;1028) to prevent problems due to finite precision. The coeffi-
cients,Cl , can be varied but good results are obtained by simply
setting them to 1.

For example, in two dimensions, one possibility is

F i j
n 5

F (
a521

11

(
b521

11

~f̃ i 1a, j 1b
n !21

N
G 21

(2.2.4)

f̃ i j
n 5uf i j

n u1d (2.2.5)

whereN neighboring terms are taken.
Here, we assumefn>0. Both positive and negative values can

also be accommodated with a small extension. Bothm and« are
positive.

An important feature is that all terms are homogeneous of de-
gree 1 in Eq.~2.2.1!. This is important because the confinement
should not depend on the scale of the quantity being confined.
Another important feature is the nonlinearity. It is easy to show
that a linear combination of terms of different order in the deriva-
tives cannot lead to a stable confinement for any finite range of
coefficients: It will either diverge or diffuse.

For smoothf fields, the last term represents a negative diffu-
sion. If m<«, whereN is the number of terms in Eq.~2.2.2!, the
total diffusion is negative. However, the iteration Eq.~2.2.1! is
still stable and converges for values of« up to about 5m, resulting
in a ~small! effective negative diffusion coefficient in the long
wavelength limit. Also, the discrete converged solution can be
given exactly in terms of sech functions.

The next step involves lettingf be the magnitude of vorticity
and deriving an equation for the corresponding velocity correction
that leads to Eq.~2.2.1! when the curl is taken~exactly in two
dimensions or for a straight vortex in three dimensions!. This will
result in a new formulation of vorticity confinement.

We simply define

qn115qn1m¹2qn1«“3wn (2.2.6)

or, for “•q50,

qn115qn2“3~mvn2«wn! (2.2.7)

where

vn5“3qn (2.2.8)

and

wn5
vn

ṽn
F(l

~ṽ l
n!21

N
G21

(2.2.9)

ṽ l
n5uvl

nu1d (2.2.10)

where the sum is the same as in Eq.~2.2.2!.
Results are presented in Fig. 1 after 0, 8, and 100 iterations, for

vorticity and velocity for a vortex in two dimensions. Values used
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werem5.2, «50, and«55m. In this figure, the vorticity contour
levels extend from about 1/4 of the maximum initial value to the
maximum so that a measure of the size of the confined region can
be determined. We are currently investigating the new method for
implementation in our codes. In addition, the use of the ‘‘scalar
confinement’’ version, Eq.~2.2.1!, is being used for flows where
thin streams of passive scalars, such as contaminants, must be
convected over long distances.

Obviously, any nonlinear equations that result in a stable struc-
ture for a feature can be thought of as producing an implicit model
of the feature. Further~very interesting! work should be done in
developing equations~added terms! that result in structures with
specified attributes.

While the vorticity confinement terms are written as positive
and negative numerical diffusion terms and act like these in the
long wavelength limit, it should be emphasized that they represent
an overallnegativediffusion that creates stable structures of the
size of a grid cell. Unlike shock capturing, characteristics do not
point inward towards the feature and automatically ‘‘capture’’ it.

3 Results
Three test cases are presented in this section. First, the effects

of vorticity confinement on the wake structure of a three-
dimensional circular and square cylinder are presented. The third
example shows the application of vorticity confinement to a real-
istic flow simulation for a ship configuration. A standard, incom-
pressible pressure-projection solution method was used.

3.1 Three-Dimensional Cylinder

3.1.1 Three-Dimensional Circular Cylinder.Flow over a
three-dimensional circular cylinder was calculated to assess the
ability of vorticity confinement to accurately model the wake flow
behind a blunt body. A long cylinder was ‘‘immersed’’ in a uni-
form 1413101361 Cartesian grid in the streamwise, normal, and
spanwise directions, respectively. Periodic conditions were im-
posed at the lateral boundaries. The diameter of the cylinder was
15 grid cells. The origin of the coordinate system used is located
in the center of the cylinder, and all distances are nondimension-
alized by the diameter, shown in Fig. 2. Results of the computa-
tions were compared to the experimental results of Lourenco and
Shih at a Reynolds number of about 3900, described in Ref.@26#.
The computational results were all averaged over the spanwise
direction.

The diffusion coefficientm was held constant for this study. The
confinement coefficient,«, was adjusted to impose different levels
of confinement. This resulted in different levels of the intensity of
the small vortical scales in the wake, and approximately simulated
different Reynolds numbers.

Figure 3 depicts the mean streamwise velocities resulting from
three values of the confinement coefficient. Figures 3~a! and 3~b!
depict the result of two levels of confinement, where the flow is
measured along lines which are normal to the cylinder axis and
the mean stream, at three different locations in the wake of the
cylinder shown in Fig. 2. For both values of« the agreement can
be seen to be very good, indicating that the effect of the confine-
ment parameter is small over a range of values. Results from a
case without confinement are depicted in Fig. 3~c!. Without con-
finement, the flowfield is dominated by diffusive effects that are
not counterbalanced by the antidiffusive confinement term and
approximates a steady, low Reynolds number flow.

Fig. 1 Vorticity contours and vector fields of velocity

Fig. 2 Measurement positions for circular cylinder
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The ability of vorticity confinement to model a turbulent wake
was assessed by computing the rms streamwise velocity fluctua-
tions in the wake region. Comparisons of these fluctuations with
the experimental data were made along the same lines in the wake
as for the mean velocity, for the same three values of«. Figure
4~a! («50.25) shows very good agreement. The effect of increas-
ing confinement to 0.5 is depicted in Fig. 4~b!. In general, the
effect of increased confinement is to thin the shear layer compris-
ing the wake boundary, and to increase the fluctuation of the time-
dependent flow from the mean flow. Figure 4~c! depicts results
without confinement. Without confinement, the flow can be seen
to be steady and exhibits none of the fluctuations that occur when
confinement is used.

Figure 5 depicts isosurfaces of vorticity magnitude for the same
three levels of confinement. The use of confinement results in
chaotic flow patterns, as would be expected in three-dimensional
turbulent flows. This does not occur in two-dimensional simula-
tions, indicating that this chaotic behavior is not due to numerical
instability created by the confinement. Increasing confinement in-
creases the chaotic nature of the flow in three dimensions and
reduces the characteristic size of the vortical structures, analogous
to what would be expected with an increase in Reynolds number.
Clearly, the use of confinement allows small-scale time-dependent
wake structures to be generated on extremely coarse grids with the
small-scale structure captured over only 1;2 grid cells. Also,
these small-scale structures serve as a viscous sink for turbulent
energy, as in physical turbulence.

3.1.2 Three-Dimensional Square Cylinder.Flow over a
square cylinder was also calculated. As in the circular case, the
cylinder was ‘‘immersed’’ in a uniform 1413101361 Cartesian
grid and periodic conditions imposed at the lateral boundaries.
The diameter~length of each side! of the cylinder was also 15 grid
cells. The same coordinate system was used as for the circular
cylinder, as shown in Fig. 6. Results of the computations were
compared to the experimental results of Lyn et al.@27# at a Rey-
nolds number of about 21,400. The computational results were all
averaged over the spanwise direction.

As in the circular cylinder case, the diffusion coefficientm was
also held constant at 0.15. The confinement coefficient,«, was
adjusted to impose different levels of confinement so as to ap-
proximate the effects of different Reynolds numbers.

Figure 7 depicts the comparison with experimental data of the
time-averaged streamwise velocity along a streamwise line ex-
tending downstream from the middle of the leeward face of the
cylinder. Results of two values of the confinement coefficient are
plotted. Figure 8 shows the time-averaged velocity along a line
normal to the cylinder axis and the mean stream atx51. Symbols
represent the experimental data. Our numerical results agree well
with the experimental data.

Comparisons of the computed turbulence level with the experi-
mental results also show reasonably good agreement in Fig. 9~a!.
The effect of decreasing confinement is shown in Fig. 9~b!. Com-
paring this case with the previous three-dimensional circular cyl-
inder case, it is easy to see that a higher value of« is required for
better results. This is apparently because the Reynolds number has
increased from about 3900 in the three-dimensional circular cyl-
inder case to roughly 21,400 in the present three-dimensional
square cylinder case.

3.1.3 Synopsis of Cylinder Study.In subsequent studies, the
correlation between« and Reynolds number will be studied by
comparisons between computation and experiment for other cases
and a useful calibration of« determined. Also, it should be em-
phasized that our agreement with experiment is closer than many
much finer, body-fitted grid studies with much more complex LES

Fig. 3 Mean streamwise velocity profiles. Symbols are experi-
mental data.
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Fig. 4 Streamwise Reynolds stresses. Symbols denote experi-
mental data.

Fig. 5 Isosurfaces of vorticity magnitude
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pde models,@28#, each requiring a number of empirical coeffi-
cients. Just one coefficient is adjusted here, on a simple, coarse
uniform Cartesian grid.

3.2 Ship Configuration. The present method of developing
the operating limits for helicopters landing or taking off from
ships is accomplished largely through flight tests, which are time-
consuming, costly, and potentially dangerous. The ability to de-
velop the operational limits using computational methods as an
adjunct to present methods has the potential of significantly reduc-
ing cost, time, and risk. Figure 10 depicts the ship configuration
used in this study, which has undergone wind tunnel testing,@29#.

The ship configuration is 80 units from bow to stern. The front

Fig. 6 Measurement positions for square cylinder

Fig. 7 Comparison of time-averaged streamwise velocity
along a streamwise line. Symbols denote experimental data.

Fig. 8 Comparison of time-averaged velocity profiles at xÄ1.
Symbols are experimental data.
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of the bow is located atX50; theY50 plane is perpendicular to
the deck and is coincident with the deck midplane. The deck is 13
units wide, extending fromY526.5 to 6.5. The deck surface is
located atZ50, with positiveZ upwards. The aerodynamic do-
main was modeled with two grids: a 4013121374 grid extended

from X5250 to 150,Y5630, andZ526.5 to 30. Far-field
boundary conditions were imposed on the surfaces of this grid. A
second grid was used to more highly resolve the forward deck
region. The second grid~501392351! extended fromX5210 to
50, Y528 to 2.92, andZ522.5 to 3.5. Boundary conditions
were imposed on the inner grid via interpolation. In addition, the
outer grid obtained flow field information from the inner grid via
interpolation at interior boundaries. As a result, two-way flow
field communication was effected to obtain a globally consistent
flow field. Velocities were measured on a plane (X523.63) for a
number ofZ locations and were compared with computational
results.

Figure 11 depicts vorticity isosurfaces over the ship deck for a
wind aspect angle of 20 deg. Ship flowfields are often character-
ized by the development of a strong vortex at the windward edge
of the deck that subsequently convects across the ship deck. The
effect of vorticity confinement is illustrated in a comparison be-
tween the isosurfaces of Figs. 11~a! and 11~b!. Without confine-
ment ~Fig. 11~a!!, the vortex is greatly dissipated; with confine-
ment ~Fig. 11~b!!, the deck vortex persists indefinitely over the
deck surface. The view in Fig. 11 is looking down from above the
deck with the bow at the bottom of the figure.

Fig. 9 Comparison of root mean square velocity fluctuation
profiles at xÄ1. Symbols are experimental data.

Fig. 10 Helicopter landing ship

Fig. 11 Isosurface of vorticity on ship deck
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It can be seen that the computed vortex location is very close to
the experimental location. These vortical structures are major fea-
tures of the ship flowfield, and would be difficult to resolve and
maintain with conventional CFD methods without a much finer
mesh. By contrast, the vortical structures are resolved and persist
on a relatively coarse mesh with vorticity confinement. This is in
accordance with physical expectations, in that the strength and
structure of the vortices are maintained without significant dissi-
pation. Quantitative results are presented in Fig. 12, which depicts
velocity one unit above the deck at a constant height horizontal
line that goes across the deck through the vortex center. The line is
depicted~from above! in Fig. 11~b! as the ‘‘experimental plane.’’
Additional information on the computation is given in Ref.@5#.

4 Conclusions
Vorticity confinement has been shown to provide an efficient,

promising means of computing the turbulent wake behind a round
and a square cylinder, on a coarse mesh. Results were presented

for the mean flow and the rms fluctuations, and the effects of
different levels of confinement~and no confinement! were dem-
onstrated. It appears that the ability to resolve scales down to 1
;2 grid cells and absorb energy there suffices to quantitatively
solve for the dynamics of the large scale turbulent eddies in the
wake. This makes the method an effective, simple type of LES.
Also, the method was shown to allow the embedding of the sur-
face in a uniform, coarse Cartesian grid without body-fitting, re-
finement, or complex logic near the surface.

It can be seen that the vorticity confinement results for the
cylinder wakes, when compared to experiment, are comparable to
conventional LES results. The difference is that the confinement
solutions employ immersed boundaries with simple, coarse Carte-
sian grids, with only 15 grid cells across the cylinder diameter,
and no complex LES turbulence pde models. As a result, no grid
generation was required and the computations were very simple to
set up and fast to run. Based on these results, it appears that
vorticity confinement should be very useful for rapid engineering
solutions for complex flows. Additional validation is being done
for surface pressures and forces in these cases~beyond that al-
ready done!, @6,10#. Further, the functional dependence of our
single constant,«, on the Reynolds number is being calibrated by
computing additional cases.

Vorticity confinement was also applied to a helicopter landing
ship. In this case, the use of confinement was shown to be neces-
sary, for the grid used, for the development of a deck vortex. This
vortex is a major feature of ship flowfields at general wind aspect
angles. The ship solution is of particular interest because, unlike
the cylinder, the main vortical structures remain close to the con-
figuration for a long distance. Although a very coarse mesh was
able to reproduce small-scale turbulent structure quite well with
the cylinder, the ship required a more dense mesh in a small
region near the corner of the bow to correctly predict the vortex
generation. Similar results have been found in other cases. This is
due to the interaction of the confinement terms with boundary
conditions imposed by solid surfaces. This interaction is a subject
of current research, as many structures~e.g., buildings! shed vor-
tices, and the ability to model these structures with coarse grids is
of great importance.

Finally, a new, more elegant, fully conservative vorticity con-
finement formulation was presented with preliminary results with
diffusion but without convection. This is currently being imple-
mented in realistic flow simulations.
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We present a new implementation of the spectral vanishing viscosity method appropriate
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subsequently present results for turbulent incompressible channel flow.
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Introduction
Turbulence simulations usingmonotonicity preservingschemes

initially considered homogeneous turbulence, employing both
PPM and FCT-type algorithms,@1,2#, but more recently emphasis
has shifted to wall-bounded flows,@3,4#. Unlike other strictly
monotonic discretizations~monotone schemes! of nonlinear con-
servation laws which are total-variation-diminishing~TVD! and
thus at most first-order accurate everywhere~see theorem of
LeVeque and Goodman in two dimensions,@5#!, the PPM and
FCT algorithms employ nonlinear limiters and guarantee monoto-
nicity locally while preserving at least second-order accuracy both
in phase and amplitude,@6,7#. These schemes honor the weaker
total-variation-bounded~TVB! or other maximum principle con-
ditions, which may allow for small amplitude oscillations. It is
worth mentioning that sign-preserving schemes are monotonicity
preserving and can be of high order; e.g., see@8#. The intriguing
feature of the monotonically integrated LES~or MILES! approach
~see@9#, also @2#, and references therein! is the activation of the
limiter on the convective fluxes and its role in generatingimplic-
itly a tensorial form of eddy viscosity that acts to stabilize the flow
and suppress oscillations. It was reported in@2# that if the resolu-
tion is fine enough to ensure that the cutoff wave number lies in
the inertial range, then the simulation results seem to be indepen-
dent of the generated viscosity.

In the aforementioned PPM and FCT algorithms for convection,
use of nonlinear limiters or reconstruction procedures is in some
form equivalent to adding diffusion to the hyperbolic conservation
laws so that entropy dissipation is created, and hence a unique
solution is obtained~see@10#!. If the discretization lacks entropy
dissipation, Gibbs oscillations are produced which eventually ren-
der the solution unstable. In convection-dominated high Reynolds
number flows the situation is analogous. However, this mecha-
nism is implicit and although the induced artificial diffusion may
scale with the local resolution as}(Dx)s, s.1, it is an uncon-
trollable process that may compromise the solution accuracy. This
conflict between monotonicity and accuracy, first analyzed by Go-
dunov@11#, was revisited by Tadmor@12# who has developed the
first theoretical resulton the convergence and stability of spectral
approximations for nonlinear conservation laws. A revised formu-
lation for polynomial spectral methods was presented more re-
cently in @13#. Specifically, Tadmor introduced artificial dissipa-
tion via the spectral vanishing viscosity~SVV!, which is
sufficiently large to suppress oscillations, yet small enough not to
affect the solution accuracy. In the context of spectral discretiza-

tions, for example, SVV can be viewed as a compromise between
the classical TVB viscosity approximation and the exponentially
accurate yet unstable spectral approximation.

The spectral vanishing viscosity approach guarantees an essen-
tially nonoscillatory behavior although some small oscillations of
bounded amplitudemay be present in the solution. This theory is
based on three key components:

1. a vanishing viscosity amplitude, which decreases with in-
creasing resolution;

2. a viscosity-free spectrum for the lower, most energetic
modes; and

3. an appropriate viscosity kernel for the high wave numbers.

If hierarchical discretizations are employed, the combined for-
mulation inherits the scale dependence attempted by other au-
thors, e.g., in the multiscale variational method of Hughes@14# or
in the nonlinear Galerkin method of Temam@15#. On the other
hand, monotonicity of the TVB kind is preserved, but the high-
frequency regularization employed is controlled by parameters
whoserange is given directly by the theory.

In previous work,@16#, the SVV approach was used for simu-
lating incompressible turbulent flows using multidomain spectral
methods based on the spectral/hp Galerkin approach, see@17#.
The unfiltered Navier-Stokes equations enhanced on the right-
hand side with a spectrally vanishing viscous operator were used.
Although reasonably successful, the previous implementation was
limited in two ways:

• First, the SVV filtering was accomplished on the C0 basis,
which is hierarchical but only semi-orthogonal.

• Second, the SVV implementation did not discriminate be-
tween fully resolved and unresolved regions, thereby possibly
applying dissipation in regions where it was not needed.

In the current paper we address these issues by presenting two
new enhancements to SVV:

1. First, we present a new SVV filtering for thecontinuous
Galerkin method in which filtering is accomplished on a
fully orthogonalset of modes.

2. Second, we propose a method to computeadaptively the
viscosity amplitude according to the local strain.

The Spectral Vanishing Viscosity Method

Static Implementation. Tadmor@12# first introduced the con-
cept of spectral vanishing viscosity~SVV! using the inviscid Bur-
gers equation

]

]t
u~x,t !1

]

]x S u2~x,t !

2 D50, (1)
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subject to prescribed initial and boundary conditions. The distinct
feature of solutions to this problem is that spontaneous jump dis-
continuities~shock waves! may be developed, and hencea class
of weak solutions can be admitted. Within this class, there are
many possible solutions, and in order to single out the physically
relevant one an additional entropy condition is applied, of the
form

]

]t S u2~x,t !

2 D1
]

]x S u3~x,t !

3 D<0. (2)

In practical applications, spectral methods are often augmented
with smoothing procedures in order to reduce the Gibbs oscilla-
tions, @18#, associated with discontinuities arising at the domain
boundaries or due to underresolution. However, with nonlinear
problems, convergence of the Fourier method, for example, may
fail despite additional smoothing of the solution. Tadmor@12# in-
troduced the spectral vanishing viscosity method, which adds a
small amount ofcontrolled dissipationthat satisfies the entropy
condition, yet retains spectral accuracy. It is based on viscosity
solutions of nonlinear Hamilton-Jacobi equations, which have
been studied systematically in@19#. Specifically, the viscosity so-
lution for the Burgers equation has the form

]

]t
u~x,t !1

]

]x S u2~x,t !

2 D5«
]

]x FQ«

]u

]x G , (3)

where«(→0) is a viscosity amplitude andQ« is a viscosity ker-
nel, which may be nonlinear and, in general, a function ofx.
Convergence may then be established by compactness estimates
combined with entropy dissipation arguments,@12#. To respect
spectral accuracy, the SVV method makes use of viscous regular-
ization, and Eq.~3! may be rewritten in discrete form~retainingN
modes! as

]

]t
uN~x,t !1

]

]x FPNS u2~x,t !

2 D G5«
]

]x FQN*
]uN

]x G , (4)

where the star~* ! denotes convolution andPN is a projection
operator.QN is a ~possibly nonlinear! viscosity kernel, which is
only activated for high wave numbers. In Fourier space, this kind
of spectral viscosity can be efficiently implemented as multiplica-
tion of the Fourier coefficients ofuN with the Fourier coefficients
of the kernelQN , i.e.,

«
]

]x FQN*
]uN

]x G52« (
M<uku<N

k2Q̂k~ t !ûk~ t !eikx,

wherek is the wave number,N the number of Fourier modes, and
M the wave number above which the spectral vanishing viscosity
is activated.

Originally, Tadmor@12# used

Q̂k5H 0, uku<M

1, uku.M ,
(5)

with «M;0.25 based on the consideration of minimizing the total
variation of the numerical solution. In subsequent work, however,
a smooth kernel was used, since it was found that theC` smooth-
ness ofQ̂k improves the resolution of the SVV method. For Leg-
endre pseudo-spectral methods, Maday, Kaber, and Tadmor@20#
used«'N21, activated for modesk.M'5AN, with

Q̂k5e2~k2N!2/~k2M !2
, k.M . (6)

In order to see the difference between the convolution operator on
the right-hand side in Eq.~4! and the usual viscosity regulariza-
tion, following Tadmor@21# we expand as

«
]

]x FQN*
]uN

]x G5«
]2uN

]x2 2«
]

]x FRN*
]uN

]x G
where

RN~x,t ![ (
k52N

N

R̂k~ t !eikx

and

R̂k~ t ![H 12Q̂k~ t ! uku>M

1 uku,M .

The extra term appearing in addition to the first standard viscosity
term makes this method different. It measures the distance be-
tween the spectral~vanishing! viscosity and the standard viscosity.
This term is bounded in theL2 norm similar to the spectral pro-
jection error. We refer to the viscosity as vanishing as the theory
requires that

«'
1

Nu log N
, u<1

and thus«→0 for high wave numbers. In more recent work,
Tadmor and his collaborators refer to it as simplyspectral viscos-
ity but this terminology may be confused with the one used by
Lesieur and his group,@22#.

At this point it is also instructive to compare the spectral van-
ishing viscosity to the spectral eddy-viscosity introduced by Kra-
ichnan@23# and Chollet-Lesieur@22,24#. The latter has the nondi-
mensional form,@24#,

n~k/N!5K0
23/2@0.441115.2 exp~23.03N/k!#,

whereK052.1.
Comparing the Fourier analog of this eddy viscosity employed

in LES, @22#, to the viscosity kernelQk(k,M ,N) introduced in the
SVV method, Fig. 1 shows both viscosity kernels normalized by
their maximum value atk5N. For SVV two different values of
the cutoff wave number are considered,

M5CAN for C50 and C55. (7)

This range has been used in most of the numerical experiments so
far ~see, for example@16,20#! and is consistent with the theoretical
results in@12#. In the plot it is shown that, in general, the two

Fig. 1 Normalized viscosity kernels for the spectral vanishing
viscosity „dash line CÄ0 and solid line CÄ5… and the
Kraichnan ÕChollet-Lesieur viscosity „dashed-dot line …
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forms of viscosity have similar distributions but the SVV form
does not affect the first one-third or one-half of the spectrum
~viscosity-free portion!, and it increases faster than the Kraichnan/
Chollet-Lesieur eddy viscosity in the higher wave numbers range,
e.g., in the second half of the spectrum.

Continuous Galerkin Discretization. In previous work,
@16#, the SVV concept was implemented in the context of amodal
spectral/hp discretization in which aC0 formulation was used for
the simulation of incompressible flows,@17#. The SVV filtering
was accomplished within the context of theC0 basis. Although the
basis in hierarchical, theC0 continuity involved in the Galerkin
projection destroys partially the orthogonality of the basis. A new
modification compared to previous work is now the filtering op-
eration is applied to an orthogonal basis which results from a
‘‘rotation’’ of the semi-orthogonal basis. Equation~8! shows the
difference in these two operations. For the SVV as implemented
in @16#, theQ operator which acts directly on thesemi-orthogonal
basis was used. In the new implementation, theQ̃ operator is used
which filters on afully orthogonalset of basis functions. This is
accomplished element-by-element by first rotating from the local
nonorthogonal basis to a corresponding orthogonal basis spanning
the same polynomial space; the filtering is then applied, and the
resulting coefficients transformed back to the local basis.

uN5(
i 51

N

ûiw i

QuN5(
i 51

N

q̂i ûiw i (8)

Q̃uN5(
i 51

N

(
j 51

N

ai j
21q̂ j(

k51

N

ajkûkw i

Technical details are provide in@25#, where it is also shown that
this new operator remains symmetric and semi-positive definite.

Dynamic Implementation. In the dynamic approach the vis-
cosity amplitude in the SVV kernel varies as a function of space
and time. We first apply this idea to the inviscid Burgers equation
and subsequently we implement it in the context of Navier-Stokes
equations. We thus rewrite the inviscid Burgers equation, and sub-
sequently we implement it in the context of Navier-Stokes equa-
tions. A revised formulation of SVV for polynomial spectral meth-
ods involving application of theQ kernel at two stages was
presented more recently in@13#. We adapt the proposed form and
rewrite the inviscid Burgers equation in strong form with amodi-
fied SVV kernelas follows:

]u

]t
1

1

2

]u2

]x
5c~x,t !Q

]2

]x2 Qu (9)

where

c~x,t !5«5
k

N

uux~x,t !u
iux~x,t !i`

. (10)

Herek is a scalar that can be determined by optimizing the quality
of the solution as we shall see below. In other words, we have
incorporated the solution into determining the magnitude of the
viscosity through the coefficientc(x,t). In this one-dimensional
case, we have employed a normalized gradient to accomplish this.
This form of c(x,t) is meant to be analogous to the adaptive
coefficient for the Navier-Stokes equationsC(x,t)5ne(x;t)/n
~wheren is the physical viscosity andne is the eddy viscosity!
proposed in@16#. The use of the rate of strain tensor in the com-
putation ofne is mimicked by the use of the magnitude of the first
derivative for this one-dimensional example.

For ease of implementation, we have chosen to use the discon-
tinuous Galerkin formulation for this investigation of Burgers
equation. We first examine how the dynamic coefficient affects the

quality of the solution. First, we evaluate the dynamic coefficient
c(x,t) a posteriori from the numerical solution of inviscid Burgers
without any viscosity treatment~Fig. 2: case A!. We then compute
c(x,t) using the globaliux(x,t)i` , i.e., max norm obtained
acrossall elements, involving the inviscid Burgers equation with
dynamic SVV applied to it~Fig. 2: case B!. Finally, we compute
c(x,t) using local iux(x,t)i` i.e., max norm obtained ineach
element, involving the inviscid Burgers equation with dynamic
SVV applied to it~Fig. 2: case C!. We observe in Fig. 2 that if the
global iux(x,t)i` is used in the definition ofc(x,t), the form of
thec(x,t) when dynamic SVV is acting on the system is the same
in shape as whenc(x,t) is obtained a posteriori. When a local
definition of iux(x,t)i` is used, however, the form ofc(x,t)
greatly changes. From this we conclude that

• to effectively utilize dynamic SVV, a global scaling quantity
such asiux(x,t)i` taken over the entire domain must be
used.

To understand the effect of the scaling parameterk/N ~whereN
is the number of modes on an individual element!, we performed
a comparison of static SVV (c(x,t)5k/N) versus dynamic SVV
(c(x,t) as given in Eq.~10!!. The inviscid Burgers equation was
solved with the added SVV term. Five equally spaced elements
spanning the interval@21,1# were used, each element containing
N516 modes. Comparisons of theL2 error and theL` error for
different values ofk are presented in Table 1. Several observa-
tions can be made based on our studies:

Fig. 2 Plot of the dynamic coefficient c „x ,t … at the final time
TÄ0.5. The three cases are explained in the text.

Table 1 Comparison of L 2 and L ` errors for the inviscid Bur-
gers equation using dynamics SVV with MÄ8; «Ä1Õ16

Form L2 Error L` Error

Inviscid 0.133395 0.17006
Static SVV 0.131833 0.44753

Local SVV k51 0.155219 0.699105
Global SVV k51 0.133296 1.15936
Global SVV k55 0.131130 1.04961
Global SVV k510 0.140145 0.775494
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• At the default value of 1/N, the static SVV does slightly
better than the no SVV cases in theL2 norm. However, the static
SVV does noticeably better in theL` than the no SVV case.

• For all values ofk/N less than 1/N, the static and dynamic
SVV perform identically.

• For both static and dynamic SVV, there exists an optimal
value ofk/N which is greater than 1/N. As viscosity in the form
of SVV is added to the system, the numerical solution becomes
monotonic. However, at some point, too much viscosity is added
and degradation in the solution occurs as monotonicity is traded
for accuracy.

Alternative LES Implementation. We apply this idea of dy-
namic SVV to compressible Navier-Stokes equations. Specifically,
the SVV kernel is applied to the density, momentum, and energy
equations with a variable viscosity amplitude given by

c~x,t !5
ruSu

iruSui`

where

uSu5ATr~Si j Si j !, Si j 5
1

2 S ]ui

]xj
1

]uj

]xi
D

andr is the local density. As not to affect the flow at the wall we
incorporate the Panton function,@26#, given by

g~y1!5
2

p
tan21S 2ky1

p D F12expS 2
y1

C1D G2

where all quantities are expressed in viscous wall units denoted by
1. This function is multiplied pointwise by the coefficientc(x,t).

In Figs. 3 and 4 we plot, respectively, a segment of the mesh
around an airfoil and contours of the SVV amplitude computed
using the aforementioned procedure. The spectral/hp element
simulation is for a two-dimensional flow past an airfoil at 10 deg
angle of attack. The mesh involved 912 quadrilateral elements
with sixth-order (N57) polynomial interpolation. It is clear that
the SVV is nonzero in regions of high vorticity which are the most
probable candidates for underresolution.

SVV-LES Coarse Resolution Simulations
The effectiveness of SVV in simulations of turbulent flows us-

ing low resolution has been first demonstrated in@16#. Here, we
revisit this problem using the aforementioned modification of the
continuous Galerkin SVV operator to study the effect of the vis-
cosity amplitude« and the wave number cutoffM on the solution
quality. Specifically, we apply theQ̃ kernel as in Eq.~8! which
filters on an orthogonal trial basis instead of the semi-orthogonal
basis employed previously in@16#.

Channel flow at Ret5180 is simulated, with periodic boundary
conditions in the streamwise and spanwise directions following
the benchmark solutions of Kim, Moin, and Moser@27#. The mesh
used here is the same as in@16#, but the resolution was doubled in
the streamwise direction and was substantially reduced in the
crossflow plane. Specifically, the size of the computational do-
main wasLx55, Ly52, andLz52. In contrast to the previous
simulations in@16#, we increased the streamwise resolution to 32
Fourier modes~64 points! to test more carefully the effect of SVV
acting only the crossflow planes and not in the streamwise direc-
tion. In the Fourier direction a 3/2 de-aliasing rule was applied for
all simulations. The spectral element mesh has 25 elements~see
Fig. 5! in the crossflow plane, with a polynomial order ofN58
compared to previous simulations in@16# whereN521. We note
that the resolution in the wall-normal direction in the current
simulations involves only 35 points!

In Fig. 6 we plot the mean-velocity profiles versus the distance
from the wall, and in Fig. 7 we plot the turbulence intensities
versus the distance from the wall for four different cases. The

Fig. 3 Segment of the mesh used for simulating the flow past
an airfoil at 10 deg angle of attack and Re Ä10,000

Fig. 4 Amplitude at one time instance of spectral vanishing viscosity in flow past an airfoil at 10 deg angle of attack and Re
Ä10,000
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symbols denote the DNS of Kim, Moin, and Moser@27#. First, we
obtained converged~in-time! statistics without SVV using the
aforementioned low resolution. The corresponding results under-
estimate the mean velocity at the centerline (Uc /ut517.67 versus
Uc /ut518.2 in @27#! as shown in Fig. 6~solid line!. Examining
the turbulent intensities, the corresponding results underestimate
the streamwise velocity component and overestimate the cross-
flow, as shown in Fig. 7~solid line!. In our initial runs, we tried
two modifications. First, we applied polynomial overintegration
which effectively removes any aliasing in the crossflow direction,

but the results remained effectively the same. Secondly, we ap-
plied the new SVV operator with the default parameters (M
55,«51/8), which also gave results similar to the untreated case.

We then experimented with several combinations of the SVV
parameters~M, «!. The SVV kernel is scaled with the given physi-
cal viscosity, so the actual term included in the Navier-Stokes
equation is proportional to Re21 «.

The best results for the turbulent intensities are shown in Fig. 7
~dash-dot line! correspond to

M55 and «55/8.

This set of parameters yields a mean velocity at the centerline
Uc /ut517.9 as shown in Fig. 6~dash-dot line!. The other curves
in the Figs. 6 and 7 correspond to (M52,«51/8) ~dot! and (M
55,«59/8) ~dashed!. The (M52,«51/8) case shows improve-
ment in both the turbulent intensities and mean-velocity profile
compared to the untreated case~solid line!; however, dissipation is
being added over a larger number of modes compared to the (M
55,«55/8) case. Observe that for (M55,«59/8) too much dis-
sipation has been added to the system, and hence the solution
overestimates the streamwise velocity component as shown in
Fig. 7. This case, however, yields the best mean-velocity profile
with Uc /ut518.15 at the centerline. Although case specific, these
results confirm the theoretical results that only the upper one-third
of the spectrum should be treated with SVV, and that there is an
optimum ~but unknown! viscosity amplitude level. We propose
computing dynamically the viscosity amplitude level using the
methodology outlined earlier. Future work will consist of com-
parisons of static and dynamic SVV for high Reynolds number
flow.
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Fig. 5 Mesh in the crossflow plane for turbulent channel flow
at RetÄ180

Fig. 6 Mean-velocity profile for the turbulent channel flow. The
symbols correspond to the benchmark solutions of Kim, Moin,
and Moser †27‡. The solid line corresponds to the underre-
solved DNS, the dotted line to „MÄ2,«Ä1Õ8…, the dot-dashed
line to „MÄ5,«Ä5Õ8…, and the dashed line to „MÄ5,«Ä9Õ8….

Fig. 7 Turbulence intensities for the turbulent channel flow.
The symbols correspond to the benchmark solutions of Kim,
Moin, and Moser †27‡. The solid line corresponds to the under-
resolved DNS, the dotted line to „MÄ2,«Ä1Õ8…, the dot-dashed
line to „MÄ5,«Ä5Õ8…, and the dashed line to „MÄ5,«Ä9Õ8….
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On Homogenization-Based
Methods for Large-Eddy
Simulation
The ability to predict complex engineering flows is limited by the available turbulence
models and the present-day computer capacity. In Reynolds averaged numerical simula-
tions (RANS), which is the most prevalent approach today, equations for the mean flow
are solved in conjunction with a model for the statistical properties of the turbulence.
Considering the limitations of RANS and the desire to study more complex flows, more
sophisticated methods are called for. An approach that fulfills these requirements is large-
eddy simulation (LES) which attempts to resolve the dynamics of the large-scale flow,
while modeling only the effects of the small-scale fluctuations. The limitations of LES are,
however, closely tied to the subgrid model, which invariably relies on the use of eddy-
viscosity models. Turbulent flows of practical importance involve inherently three-
dimensional unsteady features, often subjected to strong inhomogeneous effects and rapid
deformation that cannot be captured by isotropic models. As an alternative to the filtering
approach fundamental to LES, we here consider the homogenization method, which con-
sists of finding a so-called homogenized problem, i.e. finding a homogeneous ‘‘material’’
whose overall response is close to that of the heterogeneous ‘‘material’’ when the size of
the inhomogeneity is small. Here, we develop a homogenization-based LES-model using a
multiple-scales expansion technique and taking advantage of the scaling properties of the
Navier-Stokes equations. To study the model simulations of forced homogeneous isotropic
turbulence and channel flow are carried out, and comparisons are made with LES, direct
numerical simulation and experimental data.@DOI: 10.1115/1.1516577#

1 Introduction
For high Reynolds~Re! number complex flows present-day

computers are not powerful enough to solve the Navier-Stokes
equations~NSE! describing fluid flow, and alternative methods
must be formulated. The usual way of doing this is by means of
Reynolds averaged numerical simulation~RANS!, @1#. In RANS,
equations for the statistical average^•& of the variables are ob-
tained by averaging the NSE over homogeneous directions, time,
or across an ensemble of equivalent flows. The turbulent fluctua-
tions are not represented directly, but are included by way of a
turbulence model, which makes it possible to reduce the number
of scales or degrees-of-freedom. The statistical character of RANS
prevents a detailed description of the physical mechanisms, and is
unsuitable for problems where the dynamics is significant. How-
ever, RANS is appropriate for analyzing performance characteris-
tics, provided the turbulence models can correctly represent the
Reynolds stresses. The most advanced turbulence modeling
method at hand is large-eddy simulation~LES!, @2–5#, which has
matured to be a reliable tool for studying flows at parameter
ranges infeasible for direct numerical simulation~DNS!. In LES,
the motion is separated into small and large eddies and equations
are solved for the latter. The separation is achieved by means of a
low-pass filter, for additional details see@2–6#. Convoluting the
NSE with a pre-defined filter kernelG5G(x,D) yields the LES
equations,

H ¹• v̄5mr,

] t~ v̄!1¹•~ v̄^ v̄!52¹ p̄1¹•~S̄2B!1 f̄1mv,
(1)

wherev is the velocity,p the pressure,S52nD the viscous stress
tensor,D51/2(L1LT) the rate-of-strain tensor,n the viscosity,

L5¹v and f the specific body force. Specific to LES are the
resolved parts, denoted by an overbar, the subgrid scale stress
tensor B5(v^ v2 v̄‹v̄) and the commutation errorsmr

5@G* ,¹#v and mv5@G* ,¹#(v^ v1pI2S), where @G* ,¹# f
5¹ f 2¹ f̄ is the commutation operator. Only the resolved scales
are thus retained in LES whereas the subgrid scales are grouped
into B, which has to be modeled using an expression of the type
B(x,t)5B@ v̄(x8,t8);x,t#. The commutation errors,mr and mv,
reflect the fact that filtering and differentiation do not generally
commute,@7,8#, and the effects of these terms on the resolved
flow is currently not well known, in particular for complex flows,
and must be further investigated. For further details on the filter-
ing and the mathematical and physical properties ofB we refer to
@7–10#.

Two modeling strategies forB exists,@3,5#: Functional model-
ing which consists of modeling the action of the subgrid scales on
the resolved scales, whereasstructural modelingconsists of mod-
eling B without incorporating any knowledge about the interac-
tions between the subgrid and the resolved scales. The most fre-
quently used subgrid models belong to the first category—
assuming that the energy transfer from the resolved to the subgrid
scales is similar to that of a Brownian motion superimposed on
the motion of the resolved scales, we have

B522nkD̄, (2)

where nk is the subgrid~eddy! viscosity. To close~2! we need
models for the eddy viscositynk and the specific turbulent kinetic
energyk, and for this we assume the existence of characteristic
length and velocity scales, and we infer total separation between
resolved and subgrid scales. Among the eddy viscosity models we
have the Smagorinsky~SMG! model,@11#, the one-equation eddy
viscosity model~OEEVM!, @12#, and more recently we have seen
the development and use of dynamic eddy-viscosity models, e.g.,
@13#.
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When performing LES of simple building block flows the
agreement with experimental data is generally good, e.g.,@6#, and
not much can be gained by improving the resolution or the mod-
eling. However, when attempting LES of engineering flows a
number of difficulties are present that LES in its current form does
not handle very well.~i! As Re increases, the demands on the
subgrid model increase, and improved models may be required to
handle, e.g., nonequilibrium, transition, and anisotropy effects.~ii !
For high Re number wall-bounded flows, the small but dynami-
cally important vortical structures in the near-wall region will be-
come small compared to any grid as Re increases. One alternative
is to use local grid refinement to perform wall-resolved LES, how-
ever, at some point even this becomes prohibitively expensive. To
circumvent the severe near-wall resolution requirement, the sub-
grid models can either be modified to accommodate integration all
the way to the wall, or one may try to introduce explicit wall
models, or subgrid simulation models may be developed, which is
the topic of this paper. For more complex flows further complica-
tions arise due to compressibility effects, shock-waves and their
interaction with turbulence and chemical reactions and phase
changes.~iii ! Another difficulty for LES ~and DNS! is how to
prescribe inflow boundary conditions. Unlike RANS methods,
LES requires large-scale turbulence information at inlet bound-
aries, an issue that is hard to comply with from a practical point of
view.

The present work is concerned with the development of a new
class of LES subgrid models that will improve predictions for
complex high Re number flows using a relatively coarse grid de-
signed to resolve the outer flow. Since turbulence has a rapidly
varying spatio-temporal structure it is necessary to reduce the
problem of solving the NSE to solving equations that do not have
that rapidly varying structure. In a sense we search for equations
that correctly describe the evolution of eddies with a typical size
larger than the computational grid. As an alternative to low-pass
filtering, we here consider the homogenization method,@14#,
which consists of finding a so-called homogenized problem, i.e.,
finding a homogeneous material whose overall response is close
to that of the heterogeneous material when the size of the inho-
mogeneity is small. The homogenization method has been around
for about two decades, and has mainly been applied to problems
relating to composite materials, e.g.,@15#, flow in porous media,
macroscopic properties of polymer or crystalline structures or op-
timal design of, e.g., plates consisting of several materials. We
here develop a LES methodology based on homogenization using
a multiple-scales expansion technique, using the scaling symme-
tries of the NSE. This computational model, which consists of
solving the equations for the supergrid scales separately from
those of the subgrid scales, is based on the assumption that the
cutoff is located within the inertial subrange at each point.

2 Outline and Main Results of the Paper
The plan of the paper is the following. In Section 2.1, we in-

troduce a two-scale expansion of the Navier-Stokes equations
~NSE!. The main goal is to obtain a model equation for (v̄,p̄),
similar to a filtered NSE for conventional large-eddy simulation
~LES!. Introducing a scaling parameterd and small-scale vari-
ablesj5x/d and t5t/d2, the velocity field is decomposed,v
5vd1vd8 , into a stochastic ‘‘subgrid’’ partvd85d21w(j,t) and a
remaining ‘‘gridscale’’ part vd5 v̄(x,t)1dv1(x,t,j,t)
1d2v2(x,t,j,t)1 . . . , Eq.~71). We assume a similar expansion
for the pressure, pg5d22p22(x,t,j,t)1d21p21(x,t,j,t)
1 p̄(x,t)1dp1(x,t,j,t)1 . . . Eq.~72). We suppose that a model
for the velocity fieldw is given~one possible model is considered
in Section 3.3!. The higher-order coefficients are determined by a
cascade of equations, obtained by identifying coefficients in an
expansion of the NSE~13!, and the incompressibility condition
~14!. All fields are assumed to be periodic inj andt. Note that the
expansions~7! contain singular terms, so convergence asd→0

should be understood in a weak sense~convergence of distribu-
tions!, and the singular terms must have mean zero in the fine
scale variables, Eq.~9!. Using the expansion~14! of the incom-
pressibility condition, we thus rewrite the Navier-Stokes expan-
sion ~13! on conservative form~22!, and compute averaged ex-
pansions~23! and ~24!. The lowest-order terms in the averaged
expansion~24! gives a ‘‘homogenized’’ problem forv̄, Eq. ~25!,
which contains a subgrid stress tensorw^ v11v1^ w. Hence, to
derive the LES model, we need to computev1 . To this end, start-
ing with necessary conditions~26! on the modeledw, we con-
clude that the leading pressure termp22(j,t) is independent ofx
andt, and thatp21 must vanish. Using these facts and identifying
coefficients ford21 in the Navier-Stokes expansion~22! and~23!
we get equations forv1 in ~29!. A unique solutionṽ1 is obtained if
we impose the additional condition that the average vanishes on
the fine scale, Eq.~30!.

In Section 2.2, we represent the solution to~30! by a set of
cell-problems~31! containing no dependence on the large-scale
variables, and obtain the subgrid stress tensor in~32!. An impor-
tant point is that we get the subgrid stress tensor from a fourth-
rank eddy-viscosity tensor. Hence, we obtain an anisotropic eddy-
viscosity model not by an ad-hoc assumption, but as a direct
consequence of the NSE and the assumption of a valid two-scale
expansion. We neglect the transport terms in~31! and obtain an
approximate cell problem in~33!. Assuming a Fourier series rep-
resentation forw, we solve the approximate problem~33! by con-
sidering the corresponding system~34! for the Fourier coeffi-
cients, and making some approximations pertaining to high Re
number flows, we arrive at a series representation~38! for the
eddy-viscosity tensor. In Section 2.3, we consider the modeling of
w, assuming a scaling similar to the Kolmogorov energy spec-
trum. We want to emphasize that this is one of many possible
choices. Other choices are certainly appropriate, and in particular
near solid walls. The assumption on the energy spectrum and in-
compressibility gives the eddy-viscosity tensor~48!, written on
dimensionless form in~49!–~50!. It remains to determine the
value of the expansion parameterd and the model constantcw in
~48!. Both are determined by the conditions thatvd8(x,t)
5d21w(x/d,t/d2) have a Kolmogorov energy spectrum, giving
the Eq.~55! for the eddy-viscosity tensor. To close the model, we
assume a standard transport model for the turbulent kinetic en-
ergy, giving the final result~57!.

In Section 4 we introduce the numerical methods to be used for
discretization of the resolved continuity (151) and momentum
Eqs.~25! together with the homogenization-based subgrid model
~32!, ~50!, ~55!, and ~56!. Since we are aiming at complex
engineering-type flows, we use an unstructured, second-order ac-
curate, finite volume scheme. In Section 5 we present results from
the homogenization-based LES model applied to forced homoge-
neous isotropic turbulence and fully developed turbulent channel
flows and compare with conventional LES, direct numerical simu-
lation ~DNS!, and experimental data. These preliminary results
indicate that the proposed model performs well and captures the
primary features and trends in the experimental and DNS data.

3 Homogenization of the Navier-Stokes Equations
„NSE…

The theory of homogenization was developed in structural me-
chanics in order to study composite materials that are inhomoge-
neous but have a periodic~micro! structure, @15#. The theory
shows that if the structure is very fine, the composite material is
then equivalent to a homogeneous material whose characteristics
can be computed. The theory is more general, e.g.,@16#, and ap-
plies to problems involving partial differential equations with os-
cillating coefficients. First, however, we examine the scaling prop-
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erties of the NSE. To this end we introduce the scaled variables
t5t/d12h, j5x/d, vd5v/dh and pd5p/d2h, in which the NSE
can be expressed as

H ¹j•vd50,

]t~vd!1¹j•~vd ^ vd!52¹jpd1¹j•~d2~h11!n¹jvd!1f
. (3)

To obtain scale invariance for finite viscosity, onlyh521 is
permitted. The corresponding symmetry is then equivalent to the
similarity principle of fluid dynamics, because the scaling trans-
formations are then seen to keep the Re number unchanged. If the
viscous term is ignored, or allowed to tend to zero, as can be
justified at very high Re numbers, then we find that there are
infinitely many scaling groups, labeled by their scaling exponent
h. In the Kolmogorov theory of turbulence, e.g.,@17#, the fluctu-
ating part of the flow is considered a random process, and for an
energy spectrum of power-law type, i.e.,E(uku)}uku2n, the
second-order structure function is also of power-law type, i.e.,
^udvu2&}ux82xun21, wheredv5v(x8)2v(x). For n55/3 the ve-
locity scale is of orderd1/3, and thush51/3, which, however, is in
contrast to the scaling symmetries.

3.1 Application of the Multiple-Scales Expansion Method
to the Navier-Stokes Equations„NSE…. For the purpose of de-
veloping a LES model based on homogenization by multiple-
scales expansion we adopt the decompositionv5vd1vd8 , where
vd5vd(x,t,j,t) andvd85vd8(x,t;j,t) in which j denotes the local
spatial~subgrid! variable andt the scaled fast time~subgrid! vari-
able. Furthermore, we letv̄5 limd→0 vd . Since we cannot expect
to be able to resolve all scales of motion for arbitrary high Re
number flows it is appropriate to representv8 by a stochastic
processvd85vd8(x,t;j,t) which is to be specified later. Hence,vd
is the solution to the equations,

5
¹•vd52¹•vd8 ,

] t~vd!1~¹vd!vd2¹•~n¹vd!1~¹vd!vd81~¹vd8!vd

52¹p1f2~] t~vd8!1~¹vd8!vd82¹•~n¹vd8!!.

(4)

The choice of the random processvd85vd8(x,t;j,t) is not trivial.
From the scaling symmetries of the NSE the only obvious choice
for the short frequency high wavelength variablest and j is t
5t/d2 andj5a/d, wherea5a(x,t) is the Lagrangian coordinate,
i.e., the position at timet of the particle advected by the velocity
v̄ from positionx at t50 given as the solution to the Lagrange
invariant,

] t~a!1¹•~a^ v̄!v̄5] t~a!1~¹a!v̄50. (5)

This problem fits well into the framework of homogenization,
and in order to perform a two-scales expansion of~4! we intro-
duce the expansions

5
vd~x,t !5 v̄~x,t !1(

k51

`

dkvk~x,t;j,t!,

pd~x,t !5d22p22~x,t;j,t!1d21p21~x,t;j,t!

1 p̄~x,t !1(
k51

`

dkpk~x,t;j,t!,

(6)

where v̄5 limd→0 vd and p̄5 limd→0pd ~with limits taken in a
weak sense! define the resolved or grid-scale flow. An equivalent
two-scale expansion forv andp is thus

5 v5vd1vd85 v̄1(
k51

`

dkvk1vd85 (
k521

`

dkvk ,

p5pd5 (
k522

`

dkpk ,

;vk ,pk periodic in j,t, (7)

from which we identifyv05 v̄(x,t), p05 p̄(x,t) andd21v215vd8
5d21w(j,t). We assume that all dependent variables are peri-
odic in j andt, with periodJ j in j j , and periodT in t. Further-
more, we introduce two different averages of functionsf (x,t,j,t)
such that

f̄ ~x,t !5
1

J1J2J3T E E E
J
E

0

T

f ~x,t,j,t!dj1dj2dj3dt,

(8)

f̄ j~x,t,t!5
1

J1J2J3
E E E

J
f ~x,t,j,t!dj1dj2dj3 .

Note that by constructionf̄ (x,t)51/T*0
Tf̄ j(x,t,t)dt. A necessary

condition for the weak convergence of (vd ,pd) asd→0 is that

v21
j5w̄j50, p22

j50, p21
j50, and, consequently,

w̄50, p2250, p2150. (9)

The chain rule of differentiation transforms the differential op-
erators] t and¹ according to

H ] t5] t1d21] t~a!¹j1d22]t2d21~Gv̄!¹j1d22]t ,
¹5¹x1d21~¹xa!¹j5¹x1d21G¹j , (10)

where G5¹a. For the Laplace operator the successive use of
(102) yields

¹25~¹x1d21G¹j!
25~¹x1d21G¹j!•~¹x1d21G¹j!

5¹x
21d21~G¹j•¹x1¹x•G¹j!1d22G¹j•G¹j

5¹x
21d21@2G¹j•¹x1~¹x

TG!¹j#1d22~G¹j!
2. (11)

Formal expansion of the NSE using the multiple-scales expan-
sion ~7! together with the Lagrange invariant~5! and the chain
rule of differentiation~10! and ~11! yields
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5
~¹x1d21G¹j!• (

k521

`

dkvk50,

~] t2d21v̄•G¹j1d22]t! (
k521

`

dkvk2n~¹x
21d21~2G¹j•¹x1~¹x

TG!¹j!1d22~G¹j!
2! (

k521

`

dkvk

1S (
k521

`

dkvkD •~¹x1d21G¹j! (
l 521

`

d1v11~¹x1d21G¹j!S (
k522

`

dkpkD 5f.

(12)

Next we replaceG by the identity matrixI , which means that we are considering the flow on an intermediate timescale between the
fine scale and the coarse scale,d2!t!1, so thata(x,t)5x1 v̄(x,0)t1O(t2) and henceG5I1O(t). Then~12! may be expanded and
rearranged, using the definitionsv215dvd85w(j,t), v05 v̄ andp05 p̄, to give the expansion

(13)

Note that the second term in the continuity Eq.~131) is zero by
definition. Averaging the continuity Eq.~131) over one full period
yields

(14)

Identifying coefficients in~14!, with the use of the relation
between the two averages, we have

¹x• v̄50 and ¹x• v̄k
j50, (15)

for k51,2,3, . . . , andhence, identifying coefficients in the con-
tinuity Eq. ~131) yields

¹j•w50, ¹j•v150 and ¹x•vk1¹j•vk1150, (16)

for k51,2,3, . . . . With theadditional relations~15!–~16! we may
write the expansion of the momentum Eq.~132) above on conser-
vative form. To this end we use~16! to obtain

~w•¹x!vk115¹x•~w^ vk11!, ~w•¹j!vk125¹j•~w^ vk12!,
(17)

for k51,2,3, . . . and similarly for ( v̄•¹x), (v̄•¹j), (v1•¹x) and
(v1•¹j). Moreover,~16! gives

~vk12•¹j!w5¹j•~vk12^ w!1¹x•~vk11^ w!, (18)

~vk•¹x!v̄5¹j•~vk11^ v̄!1¹x•~vk^ v̄!, (19)

~vj•¹j!vk112 j1~vj 21•¹x!vk112 j

5¹j•~vj ^ vk112 j !1¹x•~vj 21^ vk112 j !, (20)

for k51,2,3, . . . andj 51, . . . ,k. Consequently,

(
j 51

k

~vj•¹j!vk112 j1(
j 51

k21

~vj•¹x!vk2 j

5(
j 51

k

@¹j•~vj ^ vk112 j !#1(
j 51

k21

@¹x•~vj ^ vk2 j !#.

(21)

By applying these formulas to the momentum Eq.~132) we
obtain the conservative form
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d23@]tw2n¹j
2w1¹j•~w^ w!1¹jp22#1d22@¹xp221¹jp21#1d21@¹x•~w^ v̄!1¹xp211]tv12n¹j

2v1

1¹j•~w^ v11v1^ w!1¹jp0#1@] tv̄2n¹x
2v̄22n~¹j•¹x!v11¹x•~w^ v11 v̄^ v̄1v1^ w!1¹xp01]tv22n¹j

2v2

1¹j•~w^ v21v2^ w!1¹jp1#1d@] tv12n¹x
2v122n~¹j•¹x!v21¹x•~w^ v21 v̄^ v11v1^ v̄1v2^ w!

1¹xp11]tv32n¹j
2v31¹j•~w^ v31v1^ v11v2^ v̄1v3^ w!1¹jp2#

1(
k52

`

dkF ] tvk2n¹x
2vk22n~¹j•¹x!vk111¹xpk1]tvk121¹x•S w^ vk111 v̄^ vk1(

j 51

k21

@vj ^ vk2 j #1vk^ v̄1vk11^ wD
2n¹j

2vk121¹j•S w^ vk121(
j 51

k

@vj ^ vk112 j #1vk11^ v̄1vk12^ wD 1¹jpk11G5f. (22)

Averaging the momentum Eq.~22! over J andJ3T, respectively, using~9!, gives

]21@]tv̄1
j #1@] tv̄2n¹x

2v̄1¹x•~ v̄^ v̄!1¹x•~w^ v1
j
1v1^ w

j
!1¹xp̄0

j1]tv̄2
j #1d@] tv̄1

j2n¹x
2v̄1

j

1¹x•~ v̄^ v̄1
j1 v̄1

j
^ v̄!1¹x•~w^ v2

j
1v2^ w

j
!1¹xp̄1

j1]tv̄3
j #

1(
k52

`

dkF ] tv̄k
j2n¹x

2v̄k
j1¹x•~ v̄^ v̄k

j1 v̄k
j

^ v̄!1¹xp̄k
j1]tv̄k12

j 1¹x•S w^ vk11
j
1(

j 51

k21

vj ^ vk2 j
j
1vk11^ w

jD G5f, (23)

and

@] tv̄2n¹x
2v̄1¹x•~ v̄^ v̄!1¹x•~w^ v11v1^ w!1¹xp0#1d@] tv1

2n¹x
2v11¹x•~w^ v21 v̄^ v11v1^ v̄1v2^ w!1¹xp1#

1(
k52

`

dkF ] tvk2n¹x
2vk1¹x•S w^ vk111 v̄^ vk

1(
j 51

k21

vj ^ vk2 j1vk^ v̄1vk11^ wD 1¹xpkG5f. (24)

From ~24! we recognize the LES equations by identifying the
terms of order zero,

] tv̄2n¹x
2v̄1¹x•~ v̄^ v̄!1¹x•~w^ v11v1^ w!1¹xp05f,

(25)

which contains the subgrid stress tensorB5w^ v11v1^ w, a
function of the stochastic processw, and the first-order perturba-
tion velocitiesv1 averaged overJ3T. In order to close the LES
Eq. ~25! we need to specifyw and to determinev1 . Identifying
coefficients ford23 in ~22!, using~9! and ~16! gives

H ]tw2n¹j
2w1¹j•~w^ w!1¹jp2250,

¹j•w50,

w̄j50.

(26)

Assuming these conditions onw fulfilled, we proceed to find
v1 . Assume that (w,p22) is a solution to~26!. Using ~9! we see
that p22(x,t,j,t) is a solution to the problem

5
¹j

2p2252¹j•~¹j•~w^ w!!,

p22̄
j50,

] tp2250,

¹xp2250.

p22~x,t,j,t! periodic inj,

(27)

Note that the problem (271) and (272) has no explicit dependence
on x, t, so since the solution is unique, we havep225p22(j,t)
and hence (273, 274) is a consequence of (271) and (272). Iden-
tifying coefficients for d22 in ~22! results in ¹jp2152¹xp22
50, and hence,

p215 p̄21
j 50. (28)

Identification of coefficients ford21 in Eqs. ~22! and ~23! now
results in the problem

H ]tv12n¹j
2v11¹j•~w^ v11v1^ w!1¹jp052¹x•~w^ v̄!,

¹j•v150,
]tv̄1

j50
.

(29)
Assume that (w,v̄) are given and that (v1 ,p0) is a solution to
~29!, and letṽ15v12 v̄1

j , then

H ]tṽ12n¹j
2ṽ11¹j•~w^ ṽ11 ṽ1^ w!1¹jp052¹x•~w^ v̄!,

¹j• ṽ150,

ṽ1
j
50,

ṽ1 , p0 periodic inj, (30)

andṽ1 satisfying~30! is unique. Sincew̄j50 we can replacev1 by
ṽ1 in the definition of the subgrid stress tensorB5w^ v1

1v1^ w5w^ ṽ11 ṽ1^ w. In order to determineB we thus need
to solve the cell problem~30! and specify the stochastic process
w. Given w, which is to be discussed in a forthcoming section,
this amounts to solving the cell problem~30! within each LES cell

using a so-called ‘‘grid-within-the-grid’’ approach. In this paper
we will, however, solve a simplified version of the cell-problem
~30! using analytical techniques.

3.2 A Homogenization-Based Subgrid Model. The solu-
tion v1 to ~30! depends on the variablesj and t, and parametri-
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cally on ¹xv̄. This allows us to construct solutions by superposi-
tion from problems without parameter dependence. To this end, if
(xkl

j ,pkl) is the unique solution to the problem

H ]txkl
j 2n¹j

2xkl
j 1]jm~wmxkl

j 1xkl
mwj !1]j jpkl52dk

j w1,

]jmxkl
m50,

xkl
i j50, pkl

j50,

(31)

we see that since2dk
j wl]xl v̄k52w1]xl v̄ j52]xl(wl v̄ j ), so by

linearity, the unique solution (ṽ1 ,p0) to ~30! satisfying the addi-
tional condition p̄0

j50 is given by ṽ1
j 5xkl

j . ]xl v̄k and p0

5pkl]xl v̄k. Finally, we may compute the subgrid stress tensorB
according to

Bi j 5wi ṽ1
j 1 ṽ1

i wj5wixkl
j ]x1v̄k1wjxkl

i ]x1v̄k

5~wixkl
j 1wjxkl

i !]x1v̄k5Ai jkl ]x1v̄k, (32)

whereAi jkl 5wixkl
j 1wjxkl

i is an anisotropic~fourth-rank! eddy-
viscosity tensor. It would be interesting to solve this system in
general, but at the moment we will neglect the subgrid transport
terms in ~31!, and consider instead the following simplified cell
problem:

5
]txkl

j 2n¹j
2xkl

j 1]j jpkl52dk
j w1,

(
j 851

3

]j j 8xkl
j 850,

xkl
j j

50.

(33)

Consider a grid cell, with side lengthsD i , i 51, 2, 3, and in-
troduce the nondimensionalized lengthsl i5D i /d. Then under
natural integrability conditions onw5w(j,t), xkl

j 5xkl
j (j,t) and

pkl5pkl(j,t) we have the Fourier series expansionswj (j,t)
5(mŵj (m,t)eim•Dj, xkl

j (j,t)5(mx̂kl
j (m,t)eim•Dj and

pkl(j,t)5(mp̂kl(m,t)eim•Dj, respectively, where Dj
52p@j1 / l 1 ,j2 / l 2 ,j3 / l 3#T is the lattice vector andm«Z3. Note

that ŵj (m,t)5wj j50 and similarly forxkl
j . Then the cell prob-

lem ~33! is equivalent to an infinite-dimensional system of ordi-
nary differential equations for the Fourier coefficients,

5
]tx̂kl

j ~m,t!1niDmi2x̂kl
j ~m,t!1~2p imj / l j !p̂kl~m,t!

52dk
j ŵ1~m,t!,

(
j 851

3

~2p imj 8 / l j 8!x̂kl
j 850,

x̂kl
j ~0,t!50.

(34)

Taking the divergence of the~331!, using ~332! yields
2¹j

2pkl5]jkwl , and thus pkl has the Fourier coefficients
p̂kl(m,t)5(2p imkŵ

l(m,t))/( l kiDmi2), and from~341! we ob-
tain the equations for the Fourier coefficients of the simplified cell
problem~33!, viz.,

]tx̂kl
j ~m,t!1niDmi2x̂kl

j ~m,t!5S 2dk
j 1

4p2mjmk

iDmi2l j l k
D ŵl~m,t!.

(35)

Since w is assumed to be periodic int, we see that the
coefficient x̂kl

j is the sum of a periodic part and a transient

part of the form Ce2niDmi2t. Since we are only interested in
the periodic part we assume thatx̂kl

j has reached a steady state
being periodic int, i.e., ŵj (m,t)5(m8w̃

j (m,m8)e2p im8t/T and

x̂kl
j (m,t)5(m8x̃kl

j (m,m8)e2p im8t/T so from ~35! we obtain the
following algebraic system:

S 2p im8

T
1niDmi2D x̃kl

j ~m,m8!

5S 2dk
j 1

4p2mjmk

iDmi2l j l k
D w̃l~m,m8!, (36)

from which x̃kl
j can be determined, and from which we obtain the

time averages

ŵhx̂kl
j

t
~m!5 (

m8,n8
w̃h~m,n8!x̃kl

j ~m,m̂8!e2p i ~m81n8!t/T
t

5(
m8

w̃h~m,2m8!x̃kl
j ~m,m8!

5(
m8

w̃h~m,2m8!

3
2dk

j 14p2mjmk /~ iDmi2l j l k!

~2p im8/T!1niDmi2 w̃l~m,m8!,

(37)

where we have used the notationf̄ t51/t*0
Tf dt. Next, we obtain

the anisotropic eddy-viscosity tensor directly from its definition
Ai jkl 5wixkl

j 1wjxkl
i , viz.,

Ah jkl5(
m

F ŵh~2m,t!
t ~2d jk14p2mjmk /iDmi2l j l k!

niDmi2

3ŵ1~m,t!
t
1ŵj~2m,t!

t

3
~2dhk14p2mhmk /iDmi2l hl k!

niDmi2 ŵ1~m,t!
tG , (38)

where we have neglected the phase shift betweenŵj (m,t) and

x̂kl
j (m,t) and used the fact thatŵj (m,t)

t
5w̃j (m,0). To neglect

the phase shift is reasonable for finite sums and high Re number
flows, sinceT is determined by the time step in numerical scheme,
so (2p im8/T)@niDmi2 as the Reynolds number increases, so
terms withm850 will dominate in~37! for large Re numbers.

3.3 Choices of w. We are interested inw(j)5w(j,t)
t

and the corresponding Fourier coefficientsŵ(m)5ŵ(m,t)
t
. The

choice ofw is not obvious, to say the least. Considering the ex-
pected features ofw it is natural to impose the constraints¹•w
50, and that the energy spectrum obeys the Kolmogorov inertial
subrange scaling law,E(k)5cK«1/3k25/3, wherecK is the Kol-
mogorov constant taking the valuecK'1.460.2, cf. @17#, which
puts further restrictions on the Fourier coefficients. The first
requirement is fulfilled by choosing each vector Fourier series
coefficients ŵ(m)5@ŵ1(m),ŵ2(m),ŵ3(m)#T orthogonal to the
lattice vectorDm. To fulfill the second requirement, we note
that the energy spectrum is confined to a latticek
52p@m1 / l 1 ,m2 / l 2 ,m3 / l 3#, thus each point is associated with a
reciprocal volumeV5(2p)3/( l 1l 2l 3). The one-point correlation
tensorR is defined

R~r !5w~x! ^ w~x1r !
j

5(
m,n

~ŵ~m! ^ ŵ~n!/~ l 1l 2l 3!!E ei ~m1n!•Dx1n•Drdx

5(
n

ein•Drŵ~2n! ^ ŵ~n!5(
n

ein•Drŵ* ~n! ^ ŵ~n!,

(39)

so that the spectrum tensor becomes
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F~k!5(
n

ŵ* ~n! ^ ŵ~n!dDn~k!, (40)

and hence the full three-dimensional energy spectrum is

E~k!5
1

2
trF~k!5

1

2 (
n

tr~ŵ* ~n! ^ ŵ~n!!dDn~k!

5
1

2 (
n

iŵ~n!i2dDn~k!, (41)

where dDn is the Dirac delta function concentrated atDn. The
energy in the shellk<iki<k1Dk, with the volume 4pk2Dk, is
(k<iDni<k1Dkiŵ(n)i2. Hence, the number of lattice points within
this shell is 4pk2Dk/V5 l 1l 2l 3k2Dk/2p2. In consistency with the
energy spectrum we assume that the Fourier components scale
like iŵ(n)i52pcw( l 1l 2l 3)21/2«1/3iDnia, which further implies
that the energy in a spherical shell becomes
1/2(k<iDni<k1Dkiw(n)i25cw

2 «2/3k2(11a)Dk, so that E(k)
5cw

2 «2/3k2(11a). In order to have the Kolmogorov inertial range
scaling we must have thata5211/6. With these properties in
mind, and analogous to Wiener’s classical Fourier series represen-
tation of Brownian motion~cf. @18#, p. 21! we propose the fol-
lowing Fourier series representation ofw, which is a kind of
smoothed three-parameter Brownian motion projected on the sub-
space of divergence-free vector fields,

w~j!5w~j,t!
t

52pcw~ l 1l 2l 3!21/2«1/3(
m

~gmiDmi211/6!ei ~Dm!•x,

(42)

so thatŵj (m)52pcw( l 1l 2l 3)21/2«1/3gm
j iDmi211/6, wheregm de-

notes two-dimensional independent standard Gaussian random
variables, withgm orthogonal toDm, andcw is a nondimensional
model coefficient to be determined. In order to illustrate the prop-
erties of w Fig. 1 shows a sample path ofw together with a
sample path of a Brownian motion the one-dimensional case.

3.4 Computation of the Eddy-Viscosity Tensor. From
~38! we get the Fourier series representation for the anisotropic
eddy-viscosity tensor,

Ah jkl52
4p2cw

2 «2/3

n l 1l 2l 3
(
m

1

iDmi17/3 K gm
h* S d jk2

4p2mjmk

iDmi2l j l k
Dgm

l

1gm
j* S dhk2

4p2mhmk

iDmi2l hl k
Dgm

1 L , (43)

where^•& denotes the expectation value operator. To compute the
expectation values in~43!, we need a more explicit representation
of gm . To this end, consider an orthonormal basis generated by
Dm, e.g.,

e1,m5
1

RFm1 / l 1

m2 / l 2

m3 / l 3

G , e2,m5
1

r F m2 / l 2

2m1 / l 1

0
G ,

(44)

e3,m5
1

rRFm1m3 /~ l 1l 3!

m2m3 /~ l 2l 3!

2r 2
G ,

where R5iDmi /2p5A(k51
3 (mk / l k)

2 and r 5A(m1 / l 1)2

1(m2 / l 2)2. Then

gm
h 5~a2,m1 ib2,m!e2,m

h 1~a3,m1 ib3,m!e3,m
h , (45)

whereaj ,m andbj ,m are real-valued coefficients. By the assump-
tions ongm we furthermore have that^(aj ,m)21(bj ,m)2&51, and
therefore,

^gm
h* gm

l &5(
j 52

3

^~aj ,m!21~bj ,m!2&ej ,m
h ej ,m

l 5e2,m
h e2,m

l 1e3,m
h e3,m

l

5dhl2
~mh / l h!~ml / l l !

R2 , (46)

where the last equality can be verified by an explicit calculation
using ~44!. Insertion of~46! in ~43!, using~44!, yields

Ah jkl52
cw

2 «2/3

~2p!11/3n l 1l 2l 3
(
m

R217/3F S dhl2
~mh / l h!~ml / l l !

R2 D
3S d jk2

~mj / l j !~mk / l k!

R2 D1S d j l 2
~mj / l j !~ml / l l !

R2 D
3S dhk2

~mh / l h!~mk / l k!

R2 D G . (47)

Expanding the terms in~47!, and taking into account that sums
of terms with odd powers of the components ofm vanish by
antisymmetry,~47! may be simplified to

Ah jkl52
cw

2 «2/3

~2p!11/3n l 1l 2l 3
(
m

R217/3F S 12
~mk / l k!

21~mll l !
2

R2

1
~mk / l k!

2~ml / l l !
2~22dkl!

R4 D ~dhld jk1d j l dhk!

12
~mh / l h!2~mk / l k!

2~12d j l !

R4 dh jdklG . (48)

To obtain the anisotropic eddy-viscosity tensorAh jkl in dimen-
sionless form, we introduce the isotropic length scaleD
5(D1D2D3)1/3, and the nondimensional cell-lengths,D̃ j5D j /D.
Hence, we get the fine scale cell lengthsl j5D j /d5(D/d)D̃ j and
l 1l 2l 35D1D2D3 /d35(D/d)3. Furthermore, by introducingR̃
5A(m1 /D̃1)21(m2 /D̃2)21(m3 /D̃3)25(D/d)R, Eq. ~48! may
be expressed as

Ah jkl5
cw

2 «2/3~D/d!8/3

~2p!11/3n
Ãh jkl , (49)

where the dimensionless tensorÃh jkl is defined by

Fig. 1 A typical sample path of w, according to Eq. „40…, in
green with a sample path of the Brownian motion „in red … in the
one-dimensional case
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Ãh jkl52(
m

R217/3F S 12
~mk /D̃k!

21~ml /D̃ l !
2

R̃2

1
~mk /D̃k!

2~ml /D̃ l !
2~22dkl!

R̃4
D ~dhld jk1d j l dhk!

12
~mh /D̃h!2~mk /D̃k!

2~12d j l !

R̃4
dh jdklG . (50)

Finally, we need to determine the model coefficientcw . The
most natural way is by comparison to the properties of the three-
dimensional energy spectrum. Hence, we consider, for simplicity,
the isotropic three-dimensional spectrum, Ew(k)
5**Ew(kn)k2ds(n), which scales according to

Ew~•/d!~k!5E E Ew~•/d!~kn!k2ds~n!

5E E d3Ew~dkn!k2ds~n!

5dE E Ew~~dk!n!~dk!2ds~n!5dEw~dk!, (51)

and thus, by homogeneity, we get

Edaw~•/d!~k!5d112aEw~dk!. (52)

Note that the isotropic energy spectrumEw(k) is computed in
local coordinatesx/d. Transformed to physical coordinatesx we
obtain

E~1/d!w~•/d!~k!5d21cw
2«2/3~dk!2~11a!5d112acw«2/3k2~11a!.

(53)

In order to have the Kolmogorov inertial range scaling we must
have that a5211/6, and hence,Ew(k)5cw

2«2/3k25/3 and
E(1/d)w(•/d)(k)5d28/3cw

2«2/3k25/3 and thus to obtain the Kolmog-
orov spectrum for the leading term (1/d)w(•/d) we should
choosecw5AcKd4/3. However, this choice cannot be valid for all
values ofd, since w is not allowed to depend explicitly ond.
Hence it should be viewed as a matching condition applied after
the choice ofd in the expansion. Hence, if we choosecw accord-
ing to cw5AcKd4/3 the eddy-viscosity tensorAh jkl is independent
of d, namely,

Ah jkl5
ck«

2/3D8/3

~2p!11/3n
Ãh jkl . (54)

Hence to compute the eddy-viscosity tensorAi jkl we do not need
to assume a particular value ofd, we need only to assume that
there exists a value ofd such that the series expansion is a good
approximation. To close this expression we need to model the
dissipation « of k. By deriving a transport equation fork
51/2trB51/2(uvu22uv̄u2) we find that the dissipation ofk is «
5S•D2S̄•D̄52n(iDi22iD̄i2). Within the inertial subrange
only inviscid mechanisms are active and energy is transferred
from large to small scales. The rate of transfer from the smallest
scales may therefore be estimated as«}k3/2/l, where l is an
isotropic length scale, such asl5D5A3 D1D2D3. Following, e.g.,
@12,19,20#, we use the modeled, and modified, transport equation,

] t~k!1¹•~kv̄!52B•D̄1¹•~n¹k!2«

52~~Ai jkl ~¹v !kl!D̄ i j !1¹•~n¹k!2«, (55)

where «5c«k3/2/D in which c«'1.05, cf. @19,20#. Substituting
this into ~54! yields

Ah jkl5
ckc«

2/3kD2

~2p!11/3v
Ãh jkl . (56)

For numerical purposes it is convenient to decompose the di-
mensionless eddy-viscosity tensorÃh jkl into a scalar part,Ãhkd j l ,
and the remainderÃh jkl2Ãhkd j l , where,

Ãhk5
1

3
(
j 51

3

Ãh jk j52(
m

R217/3S 12
~mk /D̃k!

2

R̃2
D dhk . (57)

The scalar part gives a scalar elliptic operator term
]xh(Ãhkd j l ]xkv̄ l)5]xh(Ãhk]xkv̄ j ), which may be handled implic-
itly in the numerical scheme, whereas the remainder may be
implemented as an explicit source term—this in order to increase
the overall stability.

4 Numerical Methods for Large-Eddy Simulation
„LES…

LES requires high-order numerical methods to avoid masking
¹•B by the leading-order truncation error. In general,D is related
to the grid, i.e.,D}udu, whereudu is the grid size, which makes the
modeled subgrid stressesO(udu2) terms. In LES, spectral and
high-order finite volume, element or difference methods are used
for spatial discretization, whilst explicit semi-implicit or
predictor-corrector methods are used for time-integration. For
complex geometries the finite volume~FV! method is the most
convenient technique. Here, the domainD is partitioned into cells
VP so thatøP(VP)5Dø]D andùP(VP)5B. The cell average
of f over thePth cell is f P51/dV*V f dV so that Gauss theorem
may be used to formulate the semi-discretized LES equations. By
integrating these over time, using, e.g., a multistep method,@21#,
the discretized LES equations become

5
b iDt

dVP
(

f
@F f

C,r#n1 i50,

(
i 50

m S a i~ v̄!P
n1 i1

b iDt

dvP
(

f
@Ff

C,v1Ff
D,v1Ff

B,v#n1 i D
52b i~¹ p̄!P

n1 iDt1b i~ f̄ !P
n1 iDt,

(58)

where m, a i and b i are parameters of the temporal scheme
whereas F f

C,r5( v̄•dA) f , Ff
C,v5( v̄•dA) f v̄f , Ff

D,v5(n¹ v̄) fdA
andFf

B,v5(B) fdA are the convective, viscous and subgrid fluxes.
The closure of these requires flux interpolation for the convective
fluxes and difference approximations for the inner derivatives of
the viscous and subgrid fluxes, respectively. In order to obtain
second-order accuracy a cell-centered FV scheme is used, in
which linear interpolation is used for the convective fluxes and
central difference approximations are used to approximate the in-
ner gradients in the viscous and subgrid fluxes. The time-
integration is performed by a three-point scheme defined bym
52, a051/2, a1522, a253/2, b05b150 and b251, and
hence,

aP~ v̄!P
n125H~ v̄!2~¹ p̄!P

n121~ f̄ !P
n12,

where H~ v̄!5(
N

aN~ v̄!N
n121

1

2Dt
~ v̄!P

n 2
2

Dt
~ v̄!P

n11, (59)

where the coefficientsaP andaN are complex functions involving,
e.g.,F f

C,r , n andnk or Ah jkl . By combining~581! and ~582!, the
continuity equation can be replaced by the Poisson equation,

¹•~aP
21~¹ p̄!n12!5(

f
~aP

21~H v̄!! f•dA1(
f

~aP
21~ f̄ !P

n12
•dA,

(60)
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where the Laplace operator is discretized in a standard manner.
F f

C,r is evaluated from the interpolated velocity fieldv̄f
n12

5(aP
21H( v̄)) f2(aP

21(¹ p̄)P
n12) f1(aP

21 f̄P
n12) f . The scalar equa-

tions are usually solved sequentially, with iteration over the ex-
plicit source terms to obtain rapid convergence, with the addi-
tional requirement that the Courant number Co,0.5.

5 Application of the Proposed Large-Eddy Simulation
„LES… Model

In order to test the homogenization-based LES model we have
performed simulations of forced homogeneous isotropic turbu-
lence at a target Taylor Re number of ReT596 and fully developed
turbulent channel flow at target friction-velocity based Re number
of Ret5395, using the scalar part~57! of the eddy viscosity tensor
~56!. Simulations with the full eddy-viscosity tensor~56! remains
to be investigated. The first case is mainly used to examine the
dependence of the eddy viscosity onk and D, and to verify the
scaling properties of the energy spectrum discussed earlier. The
aim of the second case is to study the anisotropic properties of the
subgrid model, and how well the proposed model can handle wall
bounded flows with marginal wall-normal resolution. For both
cases we compare predictions from the proposed homogenization-
based LES subgrid model with results from conventional LES
~typically using the constant coefficient Smagorinsky~SMG! and
the one equation eddy-viscosity model~OEEVM! subgrid mod-
els!, experimental data and DNS state-of-the-art results.

5.1 Homogeneous Isotropic Turbulence. For the purpose
of examining the dependence of the eddy viscosity onk and D,
and to verify the scaling properties of the energy spectrum we first
perform LES of forced homogeneous isotropic turbulence for a
Taylor Re number of ReT596 at 323 and 643 resolution, for which
DNS data is available,@22–24#. In these simulations the specific
body force,f, is used to create random forcing of the large scales.
For this specific purpose we use the forcing scheme of Eswaran
and Pope,@25#, in which the specific body force isf(k,t)
5P(k)w(k,t)@Q(k)2Q(k2kF)#, whereQ is the step-function,
P(k)5I2uku22(k ^ k) andw(k,t) is a vector valued Uhlenbeck-
Ornstein process that is characterized by^w(k,t) ^ w* (k,t1s)&
52s2 exp(2s/t)I in the equilibrium limit. In this forcing scheme
four parameters are introduced: the amplitudes of the body force,
the time scalet and the wave numberskL andkF . To avoid any
influence of the forcing on the smaller scales, only the largest

velocity scales are driven. Moreover, the initial velocity fieldv̄
5 v̄(x,0) is created by superimposing Fourier modes, having a
prescribed energy spectrum but random phases.

Figure 2~a! presents the time-averaged energy spectra for the
ReT596 case at 323 and 643 resolution together with a DNS spec-
trum, @22#, and the theoretical model spectrum of Driscoll and
Kennedy @26#. The energy spectra are found to depend on the
effects of the LES models only towards the high wave number end
of the inertial range, and into the viscous subrange. In the 643

results a larger fraction of the turbulence is resolved as compared
to the 323 results, and hence the influence of the subgrid model is
comparatively smaller. Concerning the model parametercw

5AcKd4/3, with cK51.4 being the Kolmogorov constant, these
results suggests that this particular choice, eliminatingd from
n i jkl , is appropriate in terms of reproducing the shape of the en-
ergy spectra. In general, we find that the spectra from the
homogenization-based LES model is in better agreement with
DNS data at high wave numbers than the OEEVM model. This is
further confirmed by Fig. 2~b!, which shows comparisons between
probability density functions~PDF’s! of the resolved vorticity
magnitudeuv̄u and PDF’s of the unfiltered vorticity magnitudeuvu
from DNS, wherev̄51/2¹3 v̄ is the vorticity vector. These plots
are presented in semi-logarithmic format in order to highlight the
differences occurring at the higher values of the vorticity magni-
tude due mainly to spatial resolution of the vortical structures of
the flow. Plotted in linear format we would hardly see any differ-
ences between LES and DNS, or between the different subgrid
models. The distributions ofuv̄u and uvu are far from Gaussian,
although the LES data are more Gaussian than the DNS data.
Hence, most of the resolved values are accommodated in a com-
paratively weak background that would not affect low-order sta-
tistical moments, although it will dominate high-order moments.
The homogenization-based model is observed to give slightly bet-
ter agreement with the unfiltered DNS data than the conventional
LES model, using OEEVM. This further suggests that the
homogenization-based model is less diffusive than the OEEVM,
and that we should expect the vorticity populations and the vis-
cosities from the two LES models to be quite different from each
other.

Figures 3~a! and 3~b! show volumetric visualizations at 643

resolution in terms of iso-surfaces of the vorticity magnitudeuv̄u,
and contours of the eddy viscosity,nk and un i jkl u, from conven-
tional LES using the OEEVM, and from the homogenization-
based LES model, respectively. The structure of the vorticity field

Fig. 2 Comparison of „a… the energy spectrum E and „b… the PDF of the vorticity magnitude zv̄z of forced homogeneous isotropic
turbulence at Re TÄ96 at 643 resolution for conventional LES, using the OEEVM, and the homogenisation-based LES model
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uv̄u implies that weak and strong vortices have distinct topology;
while there is no evident structure in the lower intensity regions,
the higher intensity regions tend to be organized in slender tubes
or elongated filaments. This observation is in agreement with the
PDF’s of Fig. 2~b! and volumetric visualizations of DNS results.
The thickness of the vortical structures in the LES calculations are
considerable larger than in the corresponding DNS calculations,
due to lack of spatial resolution. However, filtering the DNS data
results in considerably thicker vortical structures—qualitatively
similar to those of the LES results. Comparing the volume visu-
alizations in Fig. 3~a! and 3~b! suggests that the homogenization-
based LES model give thinner and more coherent vortical struc-
tures as compared to the OEEVM. Comparing the distribution of
the eddy viscosity it is clear that the homogenization model pro-
duces more localized regions of viscosity than the OEEVM. This
is due to the fact thatnk}k1/2, whereasn i jkl }k, which further
implies that the homogenization-based LES subgrid model is less
diffusive than the ordinary LES OEEVM model. For both models,
however, the eddy viscosity tends to peak between vortical struc-
tures, in regions of intense strainiD̄i and stretchingv̄"D̄v̄, see
also @22#.

5.2 Turbulent Channel Flow. The channel is confined be-
tween two parallel plates at a distance 2h apart, whereh is the
channel half-width. The flow is driven by a constant mass flow in
the streamwise (e1) direction defining the mean velocity^v̄&. No-
slip conditions are imposed in the cross-stream (e2) direction and

periodic conditions are used in the spanwise (e3) direction. As
initial conditions we use a parabolic velocity profile with 5%
Gaussian white noise. After reaching a statistically steady state the
simulations were continued for another 40•h/ut time units to ob-
tain statistics. Here,ut5tw

1/2 denotes the friction velocity, andtw

is the wall shear stress. The size of the channel is 6h32h33h in
the streamwise, cross-stream, and spanwise directions, and the
friction-velocity based Re number is Ret5395 for which DNS
data, @27,28#, is available. The grid consists of 603 cells with
uniform spacing in thee1 and e3 directions whereas geometrical
progression is used in thee2 direction to concentrate the grid
towards the walls. The first grid point is located aty1'5, where
the superscript ‘‘1’’ denotes nondimensionalization usingut and
the viscous length scalen/ut .

In Fig. 4 the flow features in the lower half of the channel are
presented in terms of contours of the streamwise vorticityv̄1 on
side and bottom walls and regions of intense vorticity. The regions
of intense vorticity are defined as the regions with positive second
invariantQ of the velocity gradient¹ v̄, with the additional con-
dition that p̄ should be lower than its ambient value so thatQ
51/2(iW̄i22iD̄i2), where W̄51/2(¹ v̄2¹ v̄T) and D̄51/2(¹ v̄
1¹ v̄T). In Fig. 4~a! we present volume visualizations ofQ from
Ret5395 using OEEVM and in Fig. 4~b! show the corresponding
results from the homogenization-based model. The flow in the

Fig. 3 Volumetric visualization in terms of iso-surfaces of the vorticity mag-
nitude zvz and contours of the eddy viscosity nk and zAz of forced homoge-
neous isotropic turbulence at Re TÄ96 at 643 resolution from „a… conventional
LES using the OEEVM, and from „b… the homogenization based LES model

Fig. 4 Contours of streamwise vorticity v̄1 projected onto the side and bottom
walls together with contours of the streamwise velocity fluctuations v 18Ä v̄ 1ÀŠ v̄ 1‹ at
y¿É20, and iso-surfaces of the second invariant of the velocity gradient tensor Q
for „a… OEEVM and „b… the homogenization-based subgrid model at 60 3 resolution at
RetÄ395
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near-wall region consists of recurrent streamwise rolls of high or
low-speed fluid, having a length of;1000dt , wheredt is the
viscous length scale, a radius of;15dt , and a mean streak spac-
ing of ;100dt . These structures originate in a layer of vorticity,
having a thickness of;10dt and situated at a distance;15dt
from the wall. Ejections of low-speed fluid or inrushes of high-
speed fluid at a shallow angle towards the wall are observed, and
away from the walls most organized structures disappear. The
high-speed fluid elements are inclined with respect to the walls as
a consequence of shear acting on a typical fluid element from the
outer layer moving towards the lower wall. High-pressure regions
occur whenever high-speed fluid impacts on low-speed fluid form-
ing a stagnation point. Most low-pressure regions are elongated
and concur with the vortex cores. The near-wall region is densely
populated by streamwise orv1 vortices having an upward incli-
nation that increase with distance from the wall. In the near-wall
regionv1 vortices occur separately, although sporadic, counterro-
tating, vortex pairs may occur. Due to the isotropic nature of the
viscosity of the OEEVM model processes associated with mainly
spanwise topology are overly damped as compared with the re-
sults from the homogenization-based model, thus resulting in
weaker spanwise and cross-stream rms velocity fluctuations and
lower shear stresses, due to a reduced production of turbulent
kinetic energy.

In Figs. 5~a! and 5~b! we present profiles of the time-averaged
streamwise velocitŷ v̄1& and the corresponding rms-fluctuations
v̄ i

rms from conventional LES using OEEVM, homogenization-
based LES and DNS data,@27,28#. Concerning the mean flow
field, ^v̄1&, only minor differences between the LES models can
be observed and the von Karman constant can be predicted with
essentially no dependence on the SGS model. Forv̄ i

rms we directly
observe that the homogenization based LES model gives better
agreement with DNS data than the ordinary LES model. Not only
is the relative distribution of thev̄ i

rms components improved, but
also is the location of the peakv̄ i

rms better predicted by the
homogenization-based subgrid model. The reason for this im-
provement lies mainly in the anisotropic nature of the eddy vis-
cosity, taking into account the simultaneous flow and grid
anisotropies in the near-wall region. Furthermore, the differences
between the DNS and LES in the core of the channel are mainly
attributed to the different forcing schemes used in the DNS and
LES codes, for further details, we refer to@29,30#.

6 Concluding Remarks

In this study we have developed a LES model using a two-scale
expansion technique within the framework of the homogenization
method. This approach for developing LES models is profoundly
different from the conventional filtering approach. The method is
tractable since it automatically provides a subgrid closure model,
based directly on the underlying NSE. The drawbacks are:

• limitations imposed by assuming two scales, and not a cas-
cade of scales;

• and that the approach is mathematically demanding.

The first, and most serious drawback, can be remedied by using a
multiscale expansion, or by using recursive two-scale expansions,
but this is beyond the scope of the present paper.

The subgrid model is obtained as the solution to the cell or
microstructure problem, describing the small-scale dynamics. In
this particular study we have developed a simplified analytical
subgrid model, by neglecting the transport of subgrid fluctuations
in the cell problem. The subgrid model takes the form of a gen-
eralized eddy-viscosity model, with the viscosity being a~nonlin-
ear! fourth-rank tensor. As a direct consequence of this, the ho-
mogenization based subgrid model can handle simultaneous grid
and flow anisotropies better than most conventional~scalar! eddy-
viscosity models. A conceptually similar method was developed
more than 20 years ago by Perrier and Pironneau@30#, but appears
not to have found general application. The model developed here
has been applied to forced homogeneous isotropic turbulence in a
box and fully developed turbulent channel flows. Comparisons are
made with conventional LES~using SMG and OEEVM!, experi-
mental data and DNS results. Based on the theoretical work and
the associated simulations the main conclusions are:

• the subgrid model is derived directly from the Navier-Stokes
dynamics;

• a family of subgrid models is obtained, with the most ad-
vanced model being based on solving the partial differential
equations for the cell problem along with the LES equations;

• here, we have simplified the cell problem in order to obtain
analytical solutions in order to develop a subgrid model of
conventional eddy-viscosity type;

Fig. 5 Time-averaged velocity profiles Š v̄ 1‹ „a… in outer scaling and the corresponding rms velocity fluctuations v̄ 1
rms

„b… in inner
scaling for the fully developed turbulent channel flow case at Re tÄ395

902 Õ Vol. 124, DECEMBER 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



• the scaling parameterd is evaluated as the ratio between the
Kolmogorov scale and the isotropic filter width, but other
choices may be equally appropriate;

• in the homogenization based subgrid model wall-effects are
automatically incorporated, as well as effects from nonuni-
form grids.

Further modifications to the model may involve investigating mul-
tiscale expansions, other types of solutions to the simplified cell
problem in order to better account for boundary layer effects, and
~iii ! the full numerical solution to the cell~or microstructure!
problem.
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@18# Itô, K., and McKean, Jr., H. P., 1974,Diffusion Processes and Their Sample

Paths, Springer-Verlag, New York.
@19# Kim, W.-W., and Menon, S., 1994, ‘‘A New Dynamic One Equation Sub Grid

Scale Model for Large Eddy Simulations,’’ AIAA Paper No. 95-0356.
@20# Yoshizawa, A., 1993, ‘‘Bridging Between Eddy-Viscosity-Type and Second-

Order Models Using a Two-Scale DIA,’’Ninth Symp. on Turbulent Shear
Flows, Kyoto, Japan, Aug.

@21# Hirsch C., 1999,Numerical Computation of Internal and External Flows, John
Wiley and Sons, New York.

@22# Jimenez, J., Wray, A., Saffman, P., and Rogallo, R., 1993, ‘‘The Structure of
Intense Vorticity in Isotropic Turbulence,’’ J. Fluid Mech.,255, p. 65.

@23# Kerr, R. M., 1985, ‘‘Higher Order Derivative Correlation and the Alignment of
Small Scale Structures in Numerical Turbulence,’’ J. Fluid Mech.,153, p. 31.

@24# Fureby, C., Tabor, G., Weller, H., and Gosman, D., 1997, ‘‘A Comparative
Study of Sub Grid Scale Models in Homogeneous Isotropic Turbulence,’’
Phys. Fluids,9, p. 1416.

@25# Eswaran, V., and Pope, S. B., 1988, ‘‘An Examination of Forcing in Direct
Numerical Simulation of Turbulence,’’ Comput. Fluids,16, p. 257.

@26# Driscoll, R. J., and Kennedy, L. A., 1983, ‘‘A Model for the Turbulent Energy
Spectrum,’’ Phys. Fluids,26, p. 1228.

@27# Sandham, N. D., and Howard, R. J. A., 1995, ‘‘Statistics Databases From
Direct Numerical Simulation of Fully-Developed Turbulent Channel Flow,’’
QMW-EP-1106, Queen Mary & Westfield College, Department of Engineer-
ing, London.

@28# Antonia, R. A., Teitel, M., Kim, J., and Browne, L. W. B., 1992, ‘‘Low-
Reynolds-Number Effects in a Fully Developed Turbulent Channel Flow,’’ J.
Fluid Mech.,236, p. 579.

@29# Fureby, C., Gosman, A. D., Sandham, N., Tabor, G., Weller, H. G., and Wolf-
stein, M., 1997, ‘‘Large Eddy Simulation of Turbulent Channel Flows,’’Tur-
bulent Shear Flows 11, Grenoble.

@30# Perrier, P., and Pironneau, O., 1981, ‘‘Subgrid Turbulence Modelling by Ho-
mogenization,’’ Math. Model.,2, p. 295.

Journal of Fluids Engineering DECEMBER 2002, Vol. 124 Õ 903

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



George S. Constantinescu
Center for Integrated Turbulence Simulations,

Stanford University,
Stanford, CA 94305

Hugo Pasinato

You-Qin Wang

Mechanical and Aerospace Engineering
Department,

Arizona State University,
Tempe, AZ 85287-6106

James R. Forsythe
United States Air Force Academy,

2354 Fairchild Hall,
Colorado Springs, CO 80840

Kyle D. Squires
Mechanical and Aerospace Engineering

Department,
Arizona State University,
Tempe, AZ 85287-6106

Numerical Investigation of Flow
Past a Prolate Spheroid
The flowfield around a 6:1 prolate spheroid at angle of attack is predicted using solutions
of the Reynolds-averaged Navier-Stokes (RANS) equations and detached-eddy simulation
(DES). The calculations were performed at a Reynolds number of 4.23106, the flow is
tripped at x/L50.2, and the angle of attacka is varied from 10 to 20 deg. RANS
calculations are performed using the Spalart-Allmaras one-equation model. The influence
of corrections to the Spalart-Allmaras model accounting for streamline curvature and a
nonlinear constitutive relation are also considered. DES predictions are evaluated against
experimental measurements, RANS results, as well as calculations performed without an
explicit turbulence model. In general, flowfield predictions of the mean properties from the
RANS and DES are similar. Predictions of the axial pressure distribution along the sym-
metry plane agree well with measured values for 10 deg angle of attack. Changes in the
separation characteristics in the aft region alter the axial pressure gradient as the angle
of attack increases to 20 deg. With downstream evolution, the wall-flow turning angle
becomes more positive, an effect also predicted by the models though the peak-to-peak
variation is less than that measured. Azimuthal skin friction variations show the same
general trend as the measurements, with a weak minima identifying separation.
Corrections for streamline curvature improve prediction of the pressure coefficient in
the separated region on the leeward side of the spheroid. While initiated further along
the spheroid compared to experimental measurements, predictions of primary and sec-
ondary separation agree reasonably well with measured values. Calculations without
an explicit turbulence model predict pressure and skin-friction distributions in sub-
stantial disagreement with measurements.@DOI: 10.1115/1.1517571#

1 Introduction
Flow separation in three-dimensional configurations constitutes

one of the more interesting topics of fluid dynamics research.
Boundary layer detachment is almost always accompanied by un-
desirable effects such as loss of lift, increases in drag, amplifica-
tion of unsteady effects including fluctuations in the pressure field.
Prediction of three-dimensional separation and the features with
which it is associated is difficult, forming one of the main ob-
stacles to more widespread use of computational fluid dynamics
~CFD! in analysis and design. It is predicting the three-
dimensional separated flows over maneuvering bodies that forms
the over-arching interest of the present investigations. The particu-
lar focus of this contribution is on the flow field that develops
around a prolate spheroid at a fixed angle of attack.

Three-dimensional separations strongly challenges analysis and
models. Work on two-dimensional separations, by comparison, is
more developed and has provided detailed descriptions of the con-
ditions influencing many separated flows, e.g., the effects of ad-
verse pressure gradient and flow reversal. In three-dimensional
flows, separation characteristics can be sensitive to the body ge-
ometry and angle of attack and Reynolds number, among other
factors. Flow reversal and vanishing of the shear stress are two
well-known effects that may not accompany three-dimensional
separations.

In addition to the complex topology of the flow patterns, three-
dimensional separated flows are difficult to predict using numeri-
cal simulation and modeling. In this work, computations are used
to predict the flow around a 6:1 prolate spheroid at angle of attack.
Recent calculations of the flow over a prolate spheroid include the
Reynolds-averaged calculations of Tsai and Whitney@1# and Rhee
and Hino@2# and large-eddy simulations~LES! of Alin et al. @3#

and Hedin et al.@4#. Reynolds-averaged methods~RANS! possess
the advantage of being computationally efficient, though applica-
tion of RANS models to flows with massive separation appears
beyond the reach of conventional RANS closures@5#. LES is a
powerful approach since it resolves, rather than models, the large
energy-containing scales of motion that are responsible for the
bulk of momentum transport. Application to high Reynolds num-
ber flows requires additional empiricism in treatment of the wall
layer, an active and unresolved area of current research.

Detached-eddy simulation~DES! is a hybrid approach which
attempts to capitalize on the often adequate performance of RANS
models in predicting boundary layer growth and separation, and to
use LES away from solid surfaces to model the typically
geometry-dependent and unsteady scales of motion in separated
regions@5,6#. DES is well suited for prediction of massively sepa-
rated flows and applications of the technique to a range of con-
figurations have been favorable,@7–10#. In massively separated
flows, turbulence structure in the wake develops rapidly through
amplification of instabilities that overwhelm whatever structural
content~or lack of! is transported from upstream in the boundary
layers. The lack of eddy content in the attached boundary layers
that are treated using a RANS closure has not resulted in substan-
tial errors in predicting flows experiencing massive separation.

The flow over a prolate spheroid is a difficult test for DES
because it is not massively separated, i.e., characterized by a re-
gion of chaotic, recirculating fluctuations, etc. The advantage of
DES in providing more realistic descriptions of three-dimensional
and unsteady motions in the wake of a massively separated flow is
less clear cut in the spheroid since the structures in the separated
region may not possess any region of reversed flow, for example.
In addition, experiments show that an important element of the
structure on the lee side of the spheroid are coherent streamwise
vortices, structures that are relatively stable compared to the ed-
dies that dominate the wakes of cylinder, spheres, or the region
behind an airfoil at high angle of attack.

The main goal of this study is to apply DES to prediction of the
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flow around a prolate spheroid. The computations are assessed not
only via comparison to the experimental measurements of
Chesnakas and Simpson@11# and Wetzel et al.@12#, but also using
RANS predictions and solution of the flowfield without any ex-
plicit turbulence model. The standard Spalart-Allmaras model
@13# ~referred to as S-A throughout! forms the backbone for the
RANS solutions in this study~as well as comprising the base
model in DES!. Enhancements to the RANS model are investi-
gated, specifically corrections for streamline curvature@14# and
the use of a nonlinear constitutive relation@5#. The interest is to
gauge the level of improvement possible in RANS when an exist-
ing model for which there is a substantial experience base is aug-
mented in an attempt to account for particular effects. In the
longer term, such enhancements could be easily incorporated into
a DES formulation.

Presented in the next section is an overview of the numerical
approach. The Spalart-Allmaras one-equation model is summa-
rized along with the modification require to obtain the DES for-
mulation. Details of the numerical method, grids, etc., are then
summarized. Evaluation of the flowfield predictions is then pre-
sented and, following, a summary of the study.

2 Overview and Approach

2.1 Spalart-Allmaras „S-A… Model. In the S-A RANS
model, a transport equation is used to compute a working variable
used to form the turbulent eddy viscosity,

D ñ

Dt
5cb1@12 f t2#S̃ñ2Fcw1f w2

cb1

k2 f t2GF ñ

dG2

1
1

s
@¹•~~n

1 ñ !¹ñ !1cI b2~¹ñ!2#1 f t1DU2, (1)

whereñ is the working variable. The eddy viscosityn t is obtained
from

n t5 ñ f v1 , f v15
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x31cv1
3 , x[

ñ

n
, (2)

where n is the molecular viscosity. The production term is ex-
pressed as

S̃[S1
ñ

k2d2 f v2 , f v2512
x

11x f v1
, (3)

whereS is the magnitude of the vorticity. The functionf w is given
by

f w5gF 11cw3
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The functionf t2 is defined as

f t25ct3 exp~2ct4x2!. (5)

The trip functionf t1 is specified in terms of the distancedt from
the field point to the trip, the wall vorticityv t at the trip, andDU
which is the difference between the velocity at the field point and
that at the trip

f t15ct1gt expS 2ct2

v t
2

DU2 @d21gt
2dt

2# D , (6)

wheregt5min(0.1,DU/v tDx) andDx is the grid spacing along
the wall at the trip. The wall boundary condition isñ50 and the
constants arecb150.1355, s52/3, cb250.622, k50.41, cw1

5cb1 /k21(11cb2)/s, cw250.3, cw352, cv157.1, cv255, ct1
51, ct252, ct351.1, andct452.

2.2 Detached-Eddy Simulation„DES…. The DES formula-
tion is based on a modification to the Spalart-Allmaras RANS
model @13# such that the model reduces to its RANS formulation
near solid surfaces and to a subgrid model away from the wall@5#.

The basis is to attempt to take advantage of the usually adequate
performance of RANS models in the thin shear layers where these
models are calibrated and the power of LES for resolution of
geometry-dependent and three-dimensional eddies. The DES for-
mulation is obtained by replacing in the S-A model the distance to
the nearest wall,d, by d̃, whered̃ is defined as

d̃[min~d,CDESD!, (7)

with

D[max~Dx,Dy,Dz! (8)

whereDx, Dy, andDz are the grid spacings. In ‘‘natural’’ appli-
cations of DES, the wall-parallel grid spacings~e.g., streamwise
and spanwise! are at least on the order of the boundary layer
thickness and the S-A RANS model is retained throughout the
boundary layer, i.e.,d̃5d. Consequently, prediction of boundary
layer separation is determined in the ‘‘RANS mode’’ of DES.
Away from solid boundaries, the closure is a one-equation model
for the SGS eddy viscosity. When the production and destruction
terms of the model are balanced, the length scaled̃5CDESD in the
LES region yields a Smagorinsky-like eddy viscosityñ}SD2.
Analogous to classical LES, the role ofD is to allow the energy
cascade down to the grid size; roughly, it makes the pseudo-
Kolmogorov length scale, based on the eddy viscosity, propor-
tional to the grid spacing. The additional model constantCDES
50.65 was set in homogeneous turbulence@7# and used without
modification in this work.

2.3 Numerical Approach. Turbulent flow around the spher-
oid has been calculated using numerical solution of both the in-
compressible and compressible Navier-Stokes equations. The in-
compressible flow is computed using a fractional step method in
which the governing equations are transformed to generalized cur-
vilinear coordinates with the primitive velocities and pressure re-
tained as the dependent variables. The method has previously
been applied to computation of unsteady turbulent flow using
DES by Constantinescu et al.@9# and is briefly summarized.
Within a physical time-step, the momentum and turbulence model
equations are integrated in pseudo-time using a fully implicit al-
gorithm. In the first step of the fractional step method, an inter-
mediate velocity field is obtained by advancing the convection
and diffusion terms using an alternate direction implicit~ADI !
approximate factorization scheme. The intermediate field is ob-
tained using the current pressure field and does not satisfy the
continuity constraint. A Poisson equation is then solved for the
pressure and the resulting solution is used to update the interme-
diate velocities so that continuity is satisfied. Advancement in
pseudo-time is continued until a converged solution of the equa-
tions is obtained. The convergence criterion at each physical time-
step was that the maximum value of the dimensionless velocity
and pressure residuals be smaller than 1024. Local time-stepping
techniques are used to accelerate the convergence of the resulting
system of equations. Source terms in the turbulence-model equa-
tions are also treated implicitly. The extension of the method to
time-accurate calculations using double-time-stepping is reason-
ably straightforward, as modifications are required only in the
right-hand side of the momentum and turbulence model transport
equations that now contain a physical time derivative. The time
derivative is discretized using a second-order accurate backward
difference approximation. As shown by Arnone et al.@15#, the
pseudo-time-step should be smaller than the physical time-step to
maintain numerical stability. A more detailed discussion of the
implementation is presented in Johnson and Patel@16#. The nu-
merical method is fully implicit with the momentum and turbu-
lence transport equations discretized using fifth-order accurate up-
wind differences for the convective terms. All other operators are
calculated using second-order central differences. The overall dis-
cretization scheme is second-order accurate in space, including at
the boundaries.
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One of the overall goals of the present research effort is devel-
opment of accurate predictive methods for three-dimensional
separated flows over maneuvering geometries. To this end, a com-
pressible Navier-Stokes solver—Cobalt—capable of computing
the flow around geometries undergoing rigid-body motion has
been used to predict the static-geometry flow over the spheroid.
The numerical method is a cell-centered finite volume approach
applicable to arbitrary cell topologies~e.g, hexahedrals, prisms,
tetrahdrons!. The spatial operator uses the exact Reimann solver
of Gottlieb and Groth@17#, least-squares gradient calculations us-
ing QR factorization to provide second-order accuracy in space,
and TVD flux limiters to limit extremes at cell faces. A point
implicit method using analytic first-order inviscid and viscous Ja-
cobians is used for advancement of the discretized system. For
time-accurate computations, a Newton subiteration scheme is em-
ployed, the method is second order accurate in time. The domain
decomposition library ParMETIS@18# is used for parallel imple-
mentation and provides optimal load balancing with a minimal
surface interface between zones. Communication between proces-
sors is achieved using message passing interface~MPI!, with par-
allel efficiencies above 95% on as many as 1024 processors@19#.
Calculations to date show that averaged quantities~e.g., azimuthal
pressure distributions! obtained around the spheroid using the
compressible flow solver Cobalt and those obtained with the in-
compressible flow code used by Constantinescu et al.@9# are simi-
lar. In the results that follow in Section 3, the computations per-
formed without an explicit turbulence model were performed
using Cobalt. Other predictions shown in Section 3 were obtained
using the incompressible flow solver employed by Constantinescu
et al. @9#.

Structured grids for the spheroid were generated using the con-
trol technique of Hsu and Lee@20#. Using this approach it is
possible to control grid density and enable a reasonably efficient
distribution of points in the leeward region. The grids are single
block, calculations were carried out on a series of meshes ranging
in grid sizes from 100 to 125 points along the body, 75 to 150
points in the azimuth, and 125 to 140 points normal to the spher-
oid. A view of the mesh illustrating the density of points in the aft
region of the spheroid is shown in Fig. 1. The computations are of
the complete geometry, i.e., no symmetry conditions are imposed.
For time-dependent solution via DES, it is essential to consider
the entire geometry, without resorting to imposition of symmetry

conditions. Steady-state RANS could be applied to a half-
geometry configuration, though for the time-accurate RANS per-
formed in the present calculations, the simulations also considered
the flow over the entire geometry.

The outer boundary shape of the computational domain was
elliptic, extending 12 minor axes in front of the spheroid and 15
minor axes in the downstream direction. The first wall-normal
grid point was within one viscous unit of the surface. In the cross-
stream direction the outer boundary of the domain was eight mi-
nor axes from the spheroid surface. The grid distribution in the
azimuthal direction was uniform, which is a drawback of the
present approach in that it is not optimal for the flow structures
that develop in the leeward region. An effect not considered in the
present simulations is the confining influence of the wind-tunnel
walls. In the experimental facility used to acquire the measure-
ments@11,12# the ratio of the minor axis dimension of the spher-
oid to the hydraulic radius of the tunnel is about 1/5. At the outer
boundaries of the computational domain in the present contribu-
tion the conditions are freestream, i.e., either inflow or outflow.
Any influence of the tunnel, e.g., on the pressure distribution ex-
perienced by the spheroid and its separation pattern would obvi-
ously not be accounted for in the simulations. The reader is re-
ferred to the work Hedin@4# as an example in which the flow
about the spheroid was computed in a domain with the same hy-
draulic radius as the facility used for the experiments. As de-
scribed in greater detail below, the present investigations enable
comparison of predictions obtained using various turbulence mod-
els, an assessment against the experimental measurements is also
useful, though a degree of ambiguity is introduced into the com-
parisons by not including the tunnel walls. Finally, the range of
mesh resolutions used in the current work are comparable to or
larger than those applied by previous investigators in computing
the spheroid. Over the range of resolutions considered the quan-
tities presented in Section 3 did not exhibit strong sensitivity to
the grid.

The inflow eddy viscosity was set to zero, with the trip terms
active on the surface of the spheroid atx/L50.2. It should be
noted that, while the results presented in this manuscript used the
trip term to cause laminar-to-turbulent transition, preliminary cal-
culations of the fully turbulent flow, i.e., with turbulent boundary
layers initiated from the nose of the spheroid did not yield appre-
ciable changes in azimuthal distributions of the skin friction or
pressure coefficient at the downstream stations for which most of
the measurements are available,x/L50.6 andx/L50.77. For the
incompressible flow, the velocity components and turbulent vis-
cosity at the downstream boundary are obtained using second-
order extrapolation from the interior of the domain. Far-field
boundary values for solution of the compressible equation are
obtained from the Riemann invariants. No-slip conditions on the
spheroid surface are imposed. The pressure boundary condition on
the spheroid and at the upstream and downstream boundaries in
the incompressible solution are obtained from the surface-normal
momentum equation. On the polar axes, (u50,p), the dependent
variables are obtained by averaging over the azimuth a second-
order accurate extrapolation of these variables in the incompress-
ible flow. Periodic boundary conditions are imposed on all vari-
ables in the azimuthal direction. A timestep study showed no
significant influence on the computed solutions using a timestep
of 0.01 ~made dimensionless using the minor axis of the spheroid
and freestream velocity!.

3 Results
At low incidence angles, viscous effects around a prolate spher-

oid are confined to thin three-dimensional boundary layers at-
tached to the geometry. As the angle of attack is increased, an
attached three-dimensional boundary layer characterizes the state
of the flow on the windward side. The adverse pressure gradient
along the azimuthal coordinate leads to flow detachment and the
rollup of coherent longitudinal vortices that strongly influence the

Fig. 1 Side view of the computational domain, showing in-
crease in mesh density towards aft region. Flow is from left to
right at angle of attack. Grids are uniformly spaced in the azi-
muthal direction „out of the plane of the figure ….
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character of the flow in the leeward region. For continuing in-
creases in the angle of attack, secondary separations are noted
~e.g., see Fu et al.@21# and references therein!. Some of these
features can be deduced from the surface flow visualization shown
in Fig. 2. The surface flows shown in the figure are of the aver-
aged flowfield predicted using DES. Atx/L50.2, the surface
flows are turned, corresponding to the position at which the tur-
bulence model is activated using the trip terms in~1!, also corre-
sponding to the position in which trip posts are used in the experi-
ments@11,12# to cause laminar-to-turbulent transition. Though not
shown here, the effectiveness of the trip terms is very apparent in
the skin friction distribution over the spheroid. On the windward
side an attached three-dimensional boundary layer is formed over
the spheroid. As the flow evolves downstream, boundary layer
separation occurs on the lee side, corresponding to the conver-
gence of the surface flows in Fig. 2. Wetzel et al.@12# observed
that separation from the spheroid was well correlated to local
minima in the skin friction, a similar feature found in the present
investigations. Further downstream, the surface flow pattern in
Fig. 2 diverges, corresponding to a reattaching region. The shed
vorticity that rolls up into a pair of longitudinal structures induces
a secondary separation that is predicted in the aft region shown in
Fig. 2.

The pressure coefficient in the symmetry plane from DES pre-
dictions of the flow at 10 deg and 20 deg angle of attack are
shown in Fig. 3. Measurements of the distribution at 10 deg angle
of attack are available from Chesnakas and Simpson@11#. As can
be observed in the figure, the agreement between simulation and
experiment fora510 deg is mostly good, especially on the lee-
ward side. Along the windward side in the aft region there is some
discrepancy, one contributor could be the presence of the support
sting used in the experiments and not included in the computa-
tions. Compared to the distribution ata510 deg, the profiles
from the DES prediction at 20 deg angle of attack exhibit greater
streamwise variation near the nose and tail. Along the windward
side, the axial pressure gradient is more favorable than that pre-
dicted at 10 deg. For much of the axial coordinate in the leeward
side, i.e., between aboutx/L50.2 andx/L50.8 the pressure gra-
dient change with angle of attack is less significant.

Chesnakas and Simpson@11# measured boundary layer profiles
along the spheroid at 10 deg angle of attack in a wall-collateral
coordinate system with the wall-normal velocity measured along a
radial coordinate, the streamwise component perpendicular to the
wall-normal value and in the direction of the mean flow at the
boundary layer edge, and the remaining coordinate defined to
complete definition of a right-handed coordinate system. The
mean velocity components from the DES prediction of the flow at
20 deg angle of attack are shown in Fig. 4. The profiles drawn are
at an axial positionx/L50.6 and azimuthal angle off590 deg.

In Fig. 4 and throughout the azimuthal anglef is measured from
the symmetry plane on the windward side of the spheroid. The
plot has been made dimensionless using the local boundary layer
thickness and freestream speed. Overall, the agreement with mea-
surements is adequate. The near-wall flow is resolved, with suffi-
cient resolution of the viscous region closest to the wall and cap-
ture of the logarithmic range from around 0.02,r /d,0.60. The
figure shows fair agreement in they andz component velocities is
fair.

The wall-flow turning angle,bw , is shown in Fig. 5. The angle
bw measures the direction of the flow at the wall relative to the
streamwise direction. Predictions using the standard S-A model
are plotted along with results obtained using a nonlinear constitu-
tive relation. The nonlinear model is that proposed by Spalart@6#
in which the Reynolds stress from the linear model~S-A, in this
case! is related to the nonlinear stress via

t i j 5 t̄ i j 2cnl@Oikt̄ jk1Ojkt̄ ik#, (9)

where

Fig. 2 Surface flows from DES prediction at 20 deg angle of
attack. Flow is tripped at x ÕLÄ0.2.

Fig. 3 Axial pressure distribution along windward and leeward
surfaces for aÄ10 deg and 20 deg, DES prediction. Profiles
taken along the symmetry plane.

Fig. 4 Mean velocity profile for flow at aÄ20 deg, DES predic-
tion. Profile at x ÕLÄ0.60 and fÄ90 deg.
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is the normalized rotation tensor. An advantage of the nonlinear
model~9! is that it provides a better accounting of Reynolds-stress
anisotropy, an influence that can create secondary flows of the
second kind in a square duct@22#. The second term on the right-
hand side of~9! represents one of many possible quadratic com-
binations of strain and vorticity. As also described in Spalart@5#,
the constantcnl50.3 was calibrated in the outer region of a
simple boundary layer by requiring a fair level of anisotropy. Ap-
plication of ~9! to prediction of the fully developed flow in a
square duct was positive, with secondary flows predicted and skin
friction estimations closer to measurements@5# than those ob-
tained using the linear model.

The solutions and measurements shown in Fig. 5 are for the
flow at 20 deg angle attack and at axial positionsx/L50.6 and
x/L50.77. The calculations closing the stress using~9! are de-
noted ‘‘S-A NL’’ in the figure. Note also that the region plotted
corresponds to 90<f<180 deg. Forx/L50.6, there is not a sig-
nificant difference in predictions of the turning angle for the two
models. In general, there is a lag in the predicted turning com-
pared to the measurements forf less than about 135 deg. As the
flow evolves downstream the wall-flow angle becomes more posi-
tive, together with a reduction in the skin friction coefficient. The
strong variation inbw measured in the vicinity of 150 deg coin-
cides with the positions of the primary and secondary separations.
Figure 5 shows the azimuthal variation is not as pronounced in the
simulations, using either model. Some differences emerge in pre-
dictions obtained using the two models atx/L50.77. The closure
using the nonlinear constitutive relation~9! exhibits less lag com-
pared to the experimental measurements as found using the stan-
dard S-A model. The shift toward lowerf in the minima inbw at
x/L50.77 compared tox/L50.6 seems consistent with the mea-
surements, though Fig. 5 shows greater scatter inbw measure-
ments atx/L50.77.

Skin friction and pressure coefficients are shown in Fig. 6 and
Fig. 7, respectively, fora520 deg and at an axial positionx/L
50.77. For this angle of attack and streamwise station measure-
ments show the existence of both a primary and secondary sepa-
ration on the spheroid. In addition to S-A results using the stan-
dard ~linear! model, the nonlinear relation~9!, and DES, RANS
predictions obtained using the S-A model with an explicit correc-
tion for rotation/curvature effects@14# are included~labeled S-A
RC in the figures!. The correction outlined by Spalart and Shur

@14# respects Galilean invariance, is fully defined in three dimen-
sions, and unifies rotation and curvature effects. The correction
reduces the eddy viscosity in regions where streamline curvature
is a stabilizing influence, raisingn t in regions where streamline
curvature is destabilizing. In addition to these model predictions,
also shown in Fig. 6 and Fig. 7 are results from computations
performed without any explicit turbulence model. The concept of
‘‘coarse-grid DNS’’ or LES without an explicit subgrid-scale
model has been advocated and employed in previous investiga-
tions of various flows~e.g., see Tamura et al.@23# and Boris et al.
@24#!. The approach is based on use of the dissipation inherent in
an upwind flux-limited or flux-corrected transport scheme to act
‘‘automatically’’ as a natural spatial filter for wavelengths in the
solutions with scales comparable to the mesh size. These ap-
proaches are often denoted MILES~monotone integrated large-
eddy simulation!, although results obtained in the present work
are simply referred to as ‘‘no-model’’ in the following. Detailed
investigations have not been undertaken using the current compu-
tational approach in evaluating the numerical dissipation and its

Fig. 5 Azimuthal distribution of wall-flow turning angle,
freestream at aÄ20 deg angle of attack, DES prediction

Fig. 6 Azimuthal distribution of skin friction coefficient at
x ÕLÄ0.77, flow at 20 deg angle of attack

Fig. 7 Azimuthal distribution of the pressure coefficient at
x ÕLÄ0.77, flow at aÄ20 deg angle of attack. Experimental mea-
surements summarized in Wetzel et al. †12‡.
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role as a subgrid model. The reader is referred to Fureby and
Grinstein @25# for a more detailed discussion of the MILES
approach.

With the exception of the no-model result, the general trend of
all the skin friction predictions in Fig. 6 is similar, following the
data, but less peak-to-peak variation. The minima inCf nearf
'150 deg, for example, is one approach used to identify the sepa-
ration location. TheCf distributions from all of the simulations
show an inflection point in that vicinity, but without a clear sec-
ondary minima, indicative of a weaker shed structure in the cal-
culations as compared to the experiments. Based on the skin fric-
tion, there is relatively little basis to distinguish the various
models in terms of accuracy considerations, though the DES result
shows a slightly lower global minimum aroundf'125 deg and
perhaps greater peak-to-peak variation compared to the RANS
model results. The no-model predition of the skin friction agree
very poorly with measurements, providing an illustration of the
importance of an accurate turbulence treatment in the boundary
layer. On the windward side atf50, the skin friction prediction
in the no-model result is low, consistent with the fact that for the
Reynolds number under consideration, it is not feasible to directly
resolve boundary layer turbulence and predictions without an ex-
plicit turbulence model yield an effectively laminar boundary
layer. Another substantial error source is that the no-model pre-
dictions separate substantially earlier than in calculations per-
formed with an explicit turbulence model.

The skin friction and pressure distributions show somewhat
analogous features, though skin friction minima more accurately
identify flow separation~@13#!. In Fig. 6 the pressure coefficient
distribution shows that the signature of the shed structures via the
second minima inCp is weaker in the calculations as compared to
the experiments. The S-A calculation including the rotation/
curvature correction is closest to the experimental measurement of
the second minima, slightly superior to the DES result. Analogous
to the skin friction, the no-model result for the pressure distribu-
tion differs substantially from both the experimental measure-
ments and calculations performed using an explicit turbulence
model.

The DES prediction of the primary and secondary separation
lines is compared to measured values fora520 deg in Fig. 8.
Various experimental techniques have been employed to deduce
separation locations. The figure shows some discrepancy in the
position of the separation line prior tox/L'0.3, but with gener-
ally good agreement among the different techniques in determina-

tion of the separation line further along the body. In general, the
DES predictions of the onset of both the primary and secondary
separations is delayed relative to that from the experiments, e.g.,
the primary separation is initiated slightly downstream ofx/L'
50.4. Considering the difficulty in unambiguously identifying the
onset of separation in three-dimensional flows, the agreement in
the separation lines from DES and experiments seems mostly
adequate.

4 Summary
The three-dimensional separated flow over a prolate spheroid

has been predicted using RANS and DES. Simulation results were
compared both to experimental measurements as well as to calcu-
lations in which an explicit turbulence model was not included.
Variations of the Spalart-Allmaras one-equation model were em-
ployed in the RANS. A nonlinear constitutive relation was applied
and shows some differences in prediction of quantities such as the
wall flow turning angle. Prediction of the azimuthal variations of
the skin friction and pressure coefficient using the nonlinear
model showed relatively small differences compared to the stan-
dard S-A model. A slightly stronger effect on the pressure varia-
tion was observed in calculations that incorporated the rotation/
curvature correction to S-A@14#. While improving prediction of
the signature of the longitudinal vortex on the mean pressure on
the surface, it is noteworthy that in other regions the effect of the
rotation/curvature correction did not interfere with already ad-
equate predictions. In general, for the angles of attack considered,
grid resolutions, and across two Navier-Stokes solvers, there are
not significant differences in predictions of the mean quantities
obtained using RANS and DES.

In interpreting DES predictions it should be noted that three-
dimensional separated flows over the spheroid at low angles of
attack are not characterized by overwhelming new instabilities as
the boundary layer detaches from the surface. These and similar
flows ~or regions of a flow! comprise ‘‘gray area’’ applications for
hybrid methods such as DES in which turbulent eddies may not
rapidly develop following boundary layer detachment. The
Reynolds-averaged treatment suppresses substantial eddy content
near solid surfaces and the lack of structural features in the de-
taching boundary layers may contribute to more substantial errors
in spheroid predictions as compared to other separated flows, es-
pecially those experiencing massive separation. Noteworthy is
that the most significant unsteadiness occurred in the simulations
performed without an explicit turbulence model, with variations
on the order of 15% in the lift. As shown, however, boundary
layer treatment without an explicit model can yield very poor
predictions of skin friction, inaccurate separation prediction, and
consequently poor predictions of forces and moments. The degree
to which DES predictions can be altered by incorporating effects
such as corrections for streamline curvature, for example, as well
substantial refinement of the mesh in the LES region constitute
important areas of future work.
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Detached-Eddy Simulation With
Compressibility Corrections
Applied to a Supersonic
Axisymmetric Base Flow
Detached-eddy simulation is applied to an axisymmetric base flow at supersonic condi-
tions. Detached-eddy simulation is a hybrid approach to modeling turbulence that com-
bines the best features of the Reynolds-averaged Navier-Stokes and large-eddy simulation
approaches. In the Reynolds-averaged mode, the model is currently based on either the
Spalart-Allmaras turbulence model or Menter’s shear stress transport model; in the large-
eddy simulation mode, it is based on the Smagorinski subgrid scale model. The intended
application of detached-eddy simulation is the treatment of massively separated, high-
Reynolds number flows over complex configurations (entire aircraft, automobiles, etc.).
Because of the intented future application of the methods to complex configurations,
Cobalt, an unstructured grid Navier-Stokes solver, is used. The current work incorporates
compressible shear layer corrections in both the Spalart-Allmaras and shear stress
transport-based detached-eddy simulation models. The effect of these corrections on both
detached-eddy simulation and Reynolds-averaged Navier-Stokes models is examined, and
comparisons are made to the experiments of Herrin and Dutton. Solutions are obtained on
several grids—both structured and unstructured—to test the sensitivity of the models and
code to grid refinement and grid type. The results show that predictions of base flows
using detached-eddy simulation compare very well with available experimental data,
including turbulence quantities in the wake of the axisymmetric body.
@DOI: 10.1115/1.1517572#

1 Introduction
As airplanes, missiles, and launch vehicles require greater per-

formance in ever-expanding flight regimes, the methods and pro-
cedures used for their design must be re-evaluated. The theories
and capabilities that were state of the art only a handful of years
ago may not adequately address the design requirements of cur-
rent and future flight vehicles. All aerodynamic predictive meth-
ods have as their primary goal the prediction of lift and drag.
Specifically, a major constraint on the performance of flight ve-
hicles is the total configuration drag. A supersonic body experi-
ences major drag contributions from skin friction drag, wave drag,
and pressure drag~especially in the form of base drag!. Obtaining
valid predictions for these drag components, and thus having valid
tools for design purposes, is difficult at best. Specifically, the pre-
diction of base drag in an accurate manner has long eluded the
practicing engineer. Depending on the vehicle’s base geometry
and flight conditions, the prediction of base drag can range from
mildly irritating to incredibly difficult, yet the importance of base
drag mandates that the engineer be able to make a credible pre-
diction. Experimental and semi-empirical approaches to predict-
ing base flow have been attempted for the past 50 years, with
varying degrees of success. In the past 20 years, various numerical
approaches have been used to solve the base flow problem, but the
necessity for predicting turbulence in the base region has limited
the quality of the predictions,@1,2#.

There are various techniques for the numerical prediction of
turbulent flows. These range from Reynolds-averaged Navier-
Stokes~RANS!, to large-eddy simulation~LES!, to direct numeri-
cal simulation~DNS!. DNS attempts to resolve all scales of tur-

bulence, from the largest to the smallest. Because of this, the grid
resolution requirements are very high, and increase drastically
with Reynolds number. LES attempts to model the smaller, more
homogeneous scales, while resolving the larger, energy containing
scales, which makes the grid requirements for LES significantly
less than for DNS. To accurately resolve the boundary layer, how-
ever, LES must accurately resolve the energy-containing eddies in
the boundary layer, which requires very small streamwise and
spanwise grid spacing. Finally, the RANS approach attempts to
solve the time-averaged flow, which means that all scales of tur-
bulence must be modeled. RANS models often fail to provide
accurate results for these flows since the large turbulence scales
for separated flows are very dependent on the geometry. RANS
models, however, can provide accurate results for attached bound-
ary layer flows and thin shear layers. Spalart@3# provides a
discussion and comparison of these various techniques.

These various techniques have very different computational re-
quirements. Spalart et al.@4# estimated that the LES computation
over an entire aircraft would not be possible for over 45 years.
Their estimate led to the formulation of detached-eddy simulation
~DES!, which combines the advantages of LES and RANS into
one model. RANS is used in the boundary layer, where it per-
forms well ~and with much lower grid requirements than LES!,
and LES is then used in the separated regions where its ability to
predict turbulence length scales is important. Shur et al.@5# cali-
brated the model for isotropic turbulence, and applied it to a
NACA 0012 airfoil section; the model agreed well with lift and
drag predictions to 90 deg angle of attack. Consantinescu and
Squires@6# applied detached-eddy simulation to the turbulent flow
over a sphere at several Reynolds numbers. Issues of grid resolu-
tion, numerical accuracy, and values of the model constant were
examined, and the model was compared to predictions using LES
and RANS models. Travin et al.@7# applied DES to a circular
cylinder at sub and supercritical Reynolds numbers, and obtained
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a grid-converged solution that agreed well with experiments. Stre-
lets @8# presented numerous cases using DES: a cylinder, airfoil,
backstep, triangle in a channel, raised runway section, and a land-
ing gear. Although some cases showed very little improvement
over RANS, none performed worse than RANS, and many per-
formed far better. Forsythe et al.@1# performed DES on the super-
sonic axisymmetric base flow of Herrin and Dutton@9# using an
unstructured solver; good solutions were obtained only by reduc-
ing the DES constant. This article is an attempt to improve upon
these preliminary results by using a larger selection of grids to
further examine the sensitivity of the model to grid refinement.
Menter’s shear stress transport-based DES is used for the first
time on this flow, and both RANS and DES models are run with
and without compressibility corrections.

2 Base Flow Description
Base flows are an important form of separation found in super-

sonic flowfields. This kind of flow is commonly found behind
such objects as missiles, rockets, and projectiles. The low pressure
found behind the base causes base drag which can be a sizable
portion of the total drag. To make computational fluid dynamics
useful as a design tool, it is important to be able to predict the
base pressure accurately.

An axisymmetric base flow depicted with pressure contours and
streamlines is shown in Fig. 1. The large turning angle behind the
base causes separation and the formation of a region of reverse
flow ~known as the recirculation region or the separation bubble!.
The size of the recirculation region determines the turning angle
of the flow coming off the back of the base, and therefore the
strength of the expansion waves. A smaller recirculation region
causes the flow to turn sharply, leading to a stronger expansion
wave, and lower pressures behind the base. Therefore, small sepa-
rated regions cause larger base drag than large regions.

Directly behind the base, in the recirculation region, the reverse
flow can be seen. The point along the axis of symmetry where the
streamwise velocity is zero is considered to be the shear layer
reattachment point. As the shear layer reattaches, the flow is
forced to turn along the axis of symmetry, causing the formation
of a reattachment shock. Figure 1 shows the time average of the
flowfield; for high Reynolds numbers, the incoming boundary
layer and the flow behind the base will be turbulent, leading to
highly unsteady flow behind the base. Bourdon et al.@10# present
planar visualizations of the large-scale turbulent structures in axi-
symmetric supersonic base flows, which provides evidence for the
unsteadiness and complexity of the flowfield.

Murthy and Osborn@11# provide an excellent overview of the
base flow problem, including a collection of semi-empirical ap-
proaches to model base pressure and base drag, while Dutton
et al. @12# provide a good overview on the progress in computing

high-speed separated base flows. Some of the difficulties and
complicating factors in modeling the base flow problem are

1. the upstream effects of the presence of a corner in various
Mach number flows at different Reynolds numbers;

2. the effects of separation, compression, expansion, and/or
shock formation in the vicinity of the corner;

3. the influence of the expansion wave at the base corner on the
initial turbulence structure of the shear layer, and the impact
of that shear layer on the formation of the recirculating flow
region;

4. the shear layer exists under highly compressible conditions
~i.e., at high convective Mach numbers!, which alters the
turbulence structure,@13–16#;

5. the shear layer encounters a strong adverse pressure gradient
at reattachment;

6. the strong streamline curvature at the reattachment point;
7. the enclosed recirculating region imposes a highly energetic

and nonuniform upstream velocity at the inner edge of the
shear layer;

8. the structure and shape of the recirculating zone; and
9. and the effects of the configuration~e.g., diameter, boattail,

fins, etc.!.

Taken in total, these flow features yield a complex flowfield that is
considerably difficult to model analytically or numerically.

3 A Brief Overview Of Experimental and Computa-
tional Studies

The complexities of the flow in the base region, and the diffi-
culties associated with accurately predicting the flow processes,
led researchers to utilize various semi-empirical prediction meth-
ods which were valuable but limited in their application. Early
attempts to predict base flows are summarized by Murthy and
Osborn@11#, as well as Delery and Lacau@17#. These methods
include data correlations~such as those performed by von Karman
and Moore, Hoerner, and Kurzweg! as well as theortically based
models~such as the Chapman-Korst component model, and the
viscid-inviscid integral interaction technique of Crocco and Lees!.
These models were limited in applicability by the lack of experi-
mental results for flowfield quantities in supersonic flow. This is
partially due to the difficulty in measuring turbulence quantities in
compressible flow, as well as the difficulty in interpreting the
meaning of what is being measured. According to Murthy and
Osborn@11#, future experiments, ‘‘will have to be carried out both
to assess the gross effects of various parameters as well as to
obtain detailed velocity, pressure, enthalpy, and concentration pro-
files in the base region.’’ This recommendation was originally
made in 1974, and has only been marginally fulfilled in the ensu-
ing quarter century.

In spite of the importance of the semi-empirical methods, ‘‘so-
lution of the full, Reynolds-averaged Navier-Stokes equations us-
ing currently available numerical methods offers the ability to
more realistically predict the details of the base flow structure, i.e.,
to remove many of the assumptions inherent in the component and
integral techniques.’’@12# Over the past 30 years, advances in
computational capabilities~namely increased computer memory
size and processing speed!, as well as improved numerical meth-
ods, have enabled attempts at solving various levels of the Navier-
Stokes equations for the flow around a base. Early predictions
were limited in size and scope by the solution algorithm method
and by capabilities of the computer, but eventually practical solu-
tions were obtained.

Eventually, computations were made using RANS-based solu-
tions and algebraic turbulence models, but inadequate results
quickly showed that higher-level models for turbulence would be
required for base flows@18#. Putnam and Bissinger@19# summa-
rize these early attempts and concluded that the current~mid
1984! methods were unable to accurately predict the pressures
after separation. They also recommended that, ‘‘the assessment

Fig. 1 Axisymmetric base flow—expansion and shock waves.
SST RANS simulation, contours of pressure and streamlines.
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criteria of numerical predictions should be based on the surface
pressure distributions and flowfield characteristics and not simply
on the overall afterbody drag.’’ Petrie and Walker@20# tested the
predictive capabilities of RANS calculations by soliciting solu-
tions from a number of groups for a power-on base flow configu-
ration, for which they had experimental data~the experimental
data was not released to the groups performing the calculations!.
Many fundamental parameters such as the base pressure magni-
tude and radial variation, as well as the recirculation region size,
were not accurately predicted, with large variations among the
different groups.

More recently, several groups have obtained results with much
better agreement, including Benay et al.@21#, Caruso and Childes
@22#, Childs and Caruso@23,24#, Peace@25#, Tucker and Shyy
@26#, Suzen et al.@27#, Sahu@28#, Chuang and Chieng@29#, and
Forsythe et al.@30#. Factors that affected the accuracy of the
RANS simulation of these flows included the solution-adapted
grid alignment in the high gradient shear layer regions and im-
proved turbulence modeling~especially modeling the effects of
compressibility and streamline curvature!. Childs and Caruso@23#
suggested that, ‘‘comparison of simply the base pressure between
computation and experiment, without any complementary flow-
field data, can lead to false conclusions regarding the accuracy of
the numerical solutions, due to cancellation of errors caused by
inaccurate turbulence modeling and insufficient grid resolution.’’
Dutton et al.@12# also state that, ‘‘the difficult problem of turbu-
lence modeling is the most critical outstanding issue in the accu-
rate RANS predictions of these complex flows.’’

Since Herrin and Dutton@9# published their detailed experimen-
tal results on aM`52.46 axisymmetric supersonic base flow, sev-
eral researchers have performed RANS computations on this flow,
attempting to find an accurate RANS turbulence model. Sahu@28#
used two algebraic turbulence models~Baldwin-Lomax and
Chow! and Chien’s low Reynolds numberk2e model. Chuang
and Chieng@29# published results for three higher-order models: a
two-layer algebraic stress model, Chien’s two-equationk2e
model, and Shima’s Reynolds stress model. Tucker and Shyy@26#
used several variations of two-equationk2e models, including
the original Jones-Launder formulation, and extensions to allow
improved response to the mean strain rate and compressibility
effects. Both Sahu’sk2e computation and Chuang and Chieng’s
Reynolds stress prediction of the base pressure were in reasonable
agreement with the experimental results. However, all of the mod-
els poorly predicted the mean velocity and turbulence fields. Also,
even though all three studies employed a ‘‘standard’’k2e model,
they obtained substantially different predictions of the base pres-
sure distribution. This points to possible dependence on numerical
implementation, grid resolution, turbulence model implementa-
tion, and/or boundary conditions. Suzen et al.@27# tested several
popular RANS models on a two-dimensional base, and obtained
good agreement for base pressure by adding compressibility cor-
rections to Menter’s model. Forsythe et al.@30# applied several
RANS models to the two-dimensional and axisymmetric base.
Although the two-dimensional base pressure was well predicted
by two-equation models with compressibility corrections, no
model predicted the constant pressure profile for the axisymmetric
base.

Based on the unsatisfactory results of RANS calculations to
date, other approaches such as large-eddy simulation or direct
numerical simulation should be considered. Dutton et al.@12#
state that, ‘‘In order to avoid the difficulties inherent in turbulence
modeling for the Reynolds-averaged Navier-Stokes~RANS! ap-
proach, the large-eddy simulation~LES! or direct numerical simu-
lations~DNS! techniques will eventually be applied to high-speed
flows.’’ Harris and Fasel@31# performed DNS on aM`52.46
two-dimensional base flow with the goal of addressing, ‘‘the na-
ture of the instabilities in such wake flows and to examine the
structures that arise from these instabilities.’’ Fureby et al.@32#
performed large-eddy simulation on the axisymmetricM`52.46

base flow of Mathur and Dutton@33# and Herrin and Dutton@9#,
including the effects of base bleed. Subgrid scale models used
were the Monotone Integrated LES~MILES! model, the one-
equation eddy-viscosity model, and the Smagorinski model. In
general, agreement with the experimental data were quite good,
however, the size of the recirculation region was slightly under-
predicted. A potential source of error cited was that the approach-
ing boundary layer thickness in the computations was smaller than
reported in the experimental data. This is presumably because the
grid resolution in the boundary layer was inadequate for an LES
computation, although the grid was not shown.

Forsythe et al.@1# applied detached-eddy simulation on the su-
personic axisymmetric base flow using an unstructured solver. The
boundary layer was treated entirely by RANS, which was able to
adequately predict the boundary layer thickness prior to separa-
tion. Two grids were used, with the coarse grid being clearly
inadequate. The fine grid gave a DES solution that agreed quite
well with experiments if the DES model constant was reduced
enough. Although the good agreement with the experiments was
encouraging, the lack of a grid-refined solution, and the need to
adjust the DES constant kept the results from being conclusive.
Additionally, the poor performance of the Spalart-Allmaras RANS
model on this flow created skepticism on the part of the authors
that the Spalart-Allmaras model was a good base for a hybrid
model for this flow. Menter’s model and Wilcox’sk2v model
performed far better than the Spalart-Allmaras model, especially
when compressibility corrections were included.

Baurle et al.@34# later explored hybrid RANS/LES for the su-
personic axisymmetric base flow. A separate RANS simulation
was run upstream of the base to obtain a fully turbulent velocity
profile of the correct thickness just prior to the base, then a mono-
tone integrated LES~MILES! was performed in the base region.
This approach allowed the authors to examine numerical issues
~apart from modeling issues! since a pure LES approach was used
behind the base. The agreement with experiments was quite good.

4 Governing Equations And Flow Solver
The unstructured flow solver Cobalt was chosen because of its

speed and accuracy~Cobalt is a commercial version of Cobalt60).
The relevant improvements in the commercial version for this
study were the inclusion of SST-based DES, faster per-iteration
times, the ability to calculate time-averages and turbulent statis-
tics, an improved spatial operator, and improved temporal integra-
tion. Strang et al.@35# validated the code on a number of prob-
lems, including the Spalart-Allmaras model~which forms the core
of the DES model!. Tomaro et al.@36# converted Cobalt60 from
explicit to implicit, enabling CFL numbers as high as one million.
Grismer et al.@37# then parallelized the code, yielding a linear
speedup on as many as 1024 processors. Forsythe et al.@30# pro-
vided a comprehensive testing and validation of the RANS mod-
els: Spalart-Allmaras, Wilcox’sk2v, and Menter’s models. The
Parallel METIS ~ParMetis! domain decomposition library of
Karypis and Kumar@38# and Karypis et al.@39# is also incorpo-
rated into Cobalt. ParMetis divides the grid into nearly equally
sized zones that are then distributed among the processors.

The numerical method is a cell-centered finite volume approach
applicable to arbitrary cell topologies~e.g, hexahedrals, prisms,
tetrahdra!. The spatial operator uses the exact Riemann solver of
Gottlieb and Groth@40#, least squares gradient calculations using
QR factorization to provide second-order accuracy in space, and
TVD flux limiters to limit extremes at cell faces. A point implicit
method using analytic first-order inviscid and viscous Jacobians is
used for advancement of the discretized system. For time-accurate
computations, a Newton subiteration scheme is employed, and the
method is second-order accurate in time.

The compressible Navier-Stokes equations were solved in an
inertial reference frame. To model the effects of turbulence, a
turbulent viscosity (m t) is provided by the turbulence model. To
obtainkt ~the turbulent thermal conductivity!, a turbulent Prandtl
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number is assumed with the following relation: Prt5cpm t /kt
50.9. In the governing equations,m is replaced by (m1m t) andk
~the thermal conductivity! is replaced by (k1kt). The laminar
viscosity,m, is defined using Sutherland’s law.

5 Spalart-Allmaras „S-A… Model
The Spalart-Allmaras~SA! one-equation model,@41# solves a

single partial differential equation for a variableñ which is related
to the turbulent viscosity. The differential equation is derived by,
‘‘using empiricism and arguments of dimensional analysis, Gal-
ilean invariance and selected dependence on the molecular viscos-
ity.’’ The model includes a wall destruction term that reduces the
turbulent viscosity in the log layer and laminar sublayer, and trip
terms that provide a smooth transition from laminar to turbulent.
For the current research, the trip term was turned off. Spalart@42#
suggested the use of the compressibility correction of Secundov
@43#. In order to effect the correction, the following destruction
term is added to right-hand side of the Spalart-Allmaras model
equation:

2C5ñ2Ui , jUi , j /a2 (1)

wherea is the speed of sound andC553.5, which is empirically
determined. The term accounts for the reduced spreading rates in
a compressible shear layer by reducing the turbulent eddy viscos-
ity. Cases run with the compressibility correction active are de-
noted by ‘‘CC.’’

6 Menter’s Shear Stress Transport Model
Wilcox’s k2v model is well behaved in the near-wall region,

where low Reynolds number corrections are not required. How-
ever, the model is generally sensitive to the freestream values of
v. This sensitivity seems to be a factor mainly for free shear
flows, and does not seem to adversely affect boundary layer flows.
On the other hand, thek2e equations are relatively insensitive to
freestream values, but behave poorly in the near wall region,@44#.
Menter @45,46# proposed a combinedk2e/k2v model ~known
as Menter’s SST model! which uses the best features of each
model. The model uses a parameterF1 to switch fromk2v to
k2e in the wake region to prevent the model from being sensitive
to freestream conditions.

Menter did not include compressibility corrections in his
model. Suzen and Hoffmann@47#, however, added compressible
dissipation and pressure dilatation terms to thek2e portion of
Menter’s model. When Menter’s blending process is applied, the
following equations result:
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where the pressure dilatation term is
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and the closure coefficients for the compressible corrections are:
a151.0, a250.4, anda350.2. By adding these corrections only
to the k2e portion of the model, the near wall solution (k2v

portion! is unaffected, as observed by Forsythe et al.@48#. Cases
run with the compressibility correction active are denoted by
‘‘CC.’’

7 Detached-Eddy Simulation„DES…
Detached-eddy simulation~DES! was proposed by Spalart et al.

@4# as a method to combine the best features of large-eddy simu-
lation with the best features of the Reynolds-averaged Navier-
Stokes approach. RANS tends to be able to predict attached flows
very well with a low computation cost. Traditional LES~i.e., LES
without using a wall model!, on the other hand, has a high com-
putation cost, but can predict separated flows more accurately. The
model was originally based on the Spalart-Allmaras one-equation
RANS turbulence model discussed above and in@41#. The wall
destruction term is proportional to (ñ/d)2, whered is the distance
to the closest wall. When this term is balanced with the production
term, the eddy viscosity becomesñ}Sd2, whereS is the local
strain rate. The Smagorinski LES model varies its subgrid-scale
~SGS! turbulent viscosity with the local strain rate and the grid
spacing,D ~i.e., nSGS}SD2). If, therefore,d is replaced byD in
the wall destruction term, the S-A model will act as a Smagorinski
LES model.

To exhibit both RANS and LES behavior,d in the SA model is
replaced by

d̃5min~d,CDESD! (5)

whereCDES is the DES model constant. Whend!D, the model
acts as a RANS model. Whend@D, the model acts as a Smago-
rinski LES model. Therefore, the model can be ‘‘switched’’ to
LES mode by locally refining the grid. In an attached boundary
layer, a RANS simulation will have highly stretched grids in the
streamwise direction. To retain RANS behavior in this case,D is
taken as the largest spacing in any direction (D
5max(Dx,Dy,Dz)). The model was calibrated by Shur et al.@5#
using isotropic turbulence to giveCDES of 0.65. AlthoughCDES
was reduced previously,@1#, the current study uses 0.65 for all
cases.

Strelets@8# introduced a DES model based on Menter’s SST
model. In the SST model, the turbulent length scale is given by
l k2v5k1/2/(b* v). The DES modification replaces the length
scale by l̃ 5min(lk2v ,CDESD) in the dissipative term of the
k-transport equation~i.e., the dissipation term isDDES

k 5rk3/2/ l̃ ).
Since the compressibility corrections outlined above are designed
to decrease the turbulence length scale, it was decided to include
them in the equation forl̃ ~i.e., l k2v5k1/2/(b* (11a1Mt

2(1
2F1))v)). Since Menter’s SST model is based on a blending of
k2e andk2v, Strelets@8# calibrated the model by running both
thek2e andk2v DES models on isotropic turbulence. This lead
to CDES

k2e50.61 andCDES
k2v50.78. The traditional blending function

was used to blend between the two constants~i.e., CDES5(1
2F1)CDES

k2e1F1CDES
k2v). The recommended constants were used in

the current study.
Since Cobalt accepts arbitrary cell types, a combination of tet-

rahedra and prisms were used in the current study. This is in
contrast to structured grids which use hexahedral cells. Prisms
were used in the boundary layer to reduce the number of cells
needed and to increase the accuracy of the boundary layer com-
putation by increasing the orthogonality of the cells. Previously,
Forsythe et al.@1# used the longest edge in each cell asD. How-
ever it was pointed out that a tetrahedron with an edge length
equal to a hexahedron will have roughly 1/6th the volume~imag-
ine a cube cut into 6 tetrahedra!. A more consistent method of
defining the length scale is used in the current study—the largest
distance between the cell center and all the neighboring cell cen-
ters. Since Cobalt is cell-centered, this definition provides a length
scale based on the distance between neighboring degrees-of-
freedom. In the current study, the streamwise and spanwise grid
spacing was slightly larger than the boundary layer thickness, en-
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suring that the model was operating in a RANS mode in the
boundary layer~sinced,D in the boundary layer!.

8 Results
The current article is an attempt to resolve many of the issues

revealed in the previous study,@1#, in order to build confidence in
DES for compressible flows. Four grids~both structured and un-
structured! are used to examine the sensitivity of the DES model
to grid refinement and grid type. DES based on Menter’s shear
stress transport model is applied to determine the sensitivity of
DES on the RANS model for this flow. Compressibility correc-
tions are applied to both Spalart-Allmaras and shear stress
transport-based DES. Comparisons are made to RANS solutions
and experiments.

8.1 Test Conditions. The experimental conditions for the
axisymmetric base of Herrin and Dutton@9# were matched in the
current computations. Freestream conditions ofM`52.46 and a
unit Reynolds number of Re5453106 per meter were imposed at
the inflow boundary. With a base radius of 31.75 mm, the result-
ing Reynolds number based on the diameter was Re52.858
3106. The test conditions are summarized in Table 1.

8.2 Grids and Boundary Conditions. Two unstructured
grids and two structured grids were used in the current study to
examine the effects of grid resolution and grid type. All grids used
a cylinder of length 8R, whereR is the base radius. This length
was determined by running Wilcox’s boundary layer code,
EDDYBL, @49#, with the Spalart-Allmaras model to see what
length was needed to match the experimental momentum thick-
ness.

The two structured grids were provided by Baurle et al.@34#,
with the fine grid shown in Fig. 2~a!. The grids contained only a
short portion upstream of the base, so an additional set of points
was added to extend the cylinder upstream to 8R. Two grids were
used, with the fine grid having twice as many points in each
coordinate direction. The grid densities of the coarse and fine
grids were 330,000 and 2.603106, respectively. The average first
y1 for the coarse grid on a Spalart-Allmaras calculation was 14,
while the fine grid was half that value. This is well above the
recommended value ofy151 @42#. Since Baurle et al.@34# were
using wall functions, this spacing was adequate. In the current
study, however, the boundary layer was treated without the use of
wall functions, so the resolution was inadequate. The outflow was
placed 10R downstream, while the farfield boundary was at 4.15R
from the axis of symmetry. The structured coarse and fine grids
are denoted by SGC and SGF, respectively.

The two unstructured grids had the same basic dimensions as
each other. The outflow boundary was placed 12R downstream,
and the experimental wind tunnel walls were modeled as a slip
boundary at 10R from the axis of symmetry. The first unstructured
grid, pictured in Fig. 2~b! was created using VGRIDns@50#, and

was used for previous computations,@1#. Although VGRIDns is a
pure tetrahedral grid generator, a Cobalt utilityblacksmithwas
used to recombine the tetrahedra in the boundary layer into

Table 1 Test conditions for the axisymmetric base flow, †9‡

M` 2.46

r` 0.7549
kg

m3

p` 3.14153104
N

m2

T` 145 K

Re
453106

m
R 31.75 mm

U`5U0
593.8

m

sec

Fig. 2 Closeup views of grids used. „a… Fine structural grid
„SGF…—2.60Ã106 cells; „b… VGRIDns grid „VG…—2.86Ã106

cells; „c… Gridgen grid „GG…—2.75Ã106 cells.
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prisms. The average firsty1 spacing was 0.7 for the Spalart-
Allmaras model, with cells concentrated in the shear layer and in
the separated region. The grid consisted of 2.863106 cells, and is
denoted by ‘‘VG.’’ ~See Fig. 3.!

The second unstructured grid was created with Gridgen@51#,
and is shown in Fig. 2~c!. This grid was created using the concepts
in the ‘‘Young-Person’s Guide to Detached-Eddy Simulation
Grids,’’ @52#. Gridgen’s multiblock unstructured gridding capabil-
ity was used to pack points in the separated region~or focus
region @52#! to give better LES resolution. Approximately half of
the 2.753106 cells were in a region that extended 4R down-
stream, and 1.3R from the axis of symmetry. The boundary layer
consisted of prisms, with an average firsty1 spacing of less than
0.2 for the Spalart-Allmaras model. This grid is denoted by
‘‘GG.’’

All farfield, inflow, and outflow boundaries used the modified
Reimmann invarient boundary condition in Cobalt. It should be
noted that no synthetic turbulence was added to the farfield
boundaries. This was considered appropriate even for DES since
the boundary layer was treated in RANS mode. It was expected
that the instabilities at the separation point would then provide the
unsteady content for the simulation. Solid walls on the cylinder
were set to be adiabatic no slip, while the outer wind tunnel walls
were set to a slip boundary condition. For the no-slip boundary
conditions, the normal gradient of pressure was assumed to be
zero. No wall functions were used for the turbulence models ei-
ther for DES or RANS.

8.3 Calculation Details. A timestep study was performed
previously and reported in@1#. Pressure was monitored at ten
locations along the axis of symmetry, and the timestep was varied.
Also, two full DES calculations were done with a timestep that
varied by a factor of two, with little effect on the mean flow. The
current calculations reduced the timestep from the previous study
value of 5.031026 to 3.231026. This gives a nondimensional
timestep~by base diameter and freestream velocity! of 0.025. In
the base region, the velocities are far lower than the freestream
velocity, leading to local CFL numbers that are less than one
outside the boundary layer. The other parameters used for the
temporal integration were two Newton subiterations, 32 matrix
sweeps, and a temporal damping of 0.025~inviscid! and 0.01
~viscous!. The calculations were run for 4000 iterations prior to
beginning to take time averages, and statistics were calculated
internally by Cobalt for a minimum of 10,000 iterations. The code
was run second-order accurate in both time and space, and RANS
calculation were done with a CFL of 13106 to rapidly obtain a
steady-state solution. Previous runs suggested that the RANS cal-
culations would not give an unsteady solution.

As in the previous study, asymmetries were observed in the
mean flow. In the previous study, only 4000 total iterations were
used to calculate time averages. The current study showed that
these asymmetries were greatly reduced, but not eliminated, by
running as many as 40,000 iterations. This many iterations was
considered impracticable, so averages were taken both in time and
in the azimuthal direction.

Calculations were performed on an IBM SP3 and a Linux clus-
ter, with between 32 and 256 processors being used. With 256
processors, the most expensive calculations~14,000 iterations,
2.853106 cells, DES-SST model! took around 30 wall-clock
hours. The steady-state calculations took about a tenth that time,
since less than 2000 iterations were necessary with less subitera-

Fig. 4 Pressure along the base—RANS models

Table 2 Test matrix showing range of time averaged pressure coefficient across the base—
take from Figs. 4 and 9. Turbulence models: SA ÄSpalart-Allmaras, SST ÄMenter’s shear stress
transport, DES Ädetached-eddy simulation, CC Äcompressibility correction; Grids: SGC
Ästructured grid coarse, SGF Ästructured grid fine, VG ÄVGRIDns grid, GG ÄGridgen grid.

SGC SGF VG GG

SA 20.174/20.192
SA-CC 20.082/20.148
SST 20.123/20.141
SST-CC 20.075/20.128
DES-SA 20.117/20.172 20.107/20.118 20.097/20.102 20.098/20.101
DES-SA-CC 20.122/20.165 20.097/20.102 20.099/20.102
DES-SST 20.088/20.094 20.088/20.090
DES-SST-CC 20.093/20.100 20.094/20.097
Experimental@9# 20.100/20.105

Fig. 3 Boundary layer profile 1 mm prior to the base—RANS
models
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tions. The test matrix for the turbulence models and the different
grids is shown in Table 2. The matrix contains the range of time
averaged pressure coefficients on the base for each calculation as
well as the experimental values. These values were obtained by
finding the maximum and minimum pressure coefficients from
Figs. 4 and 9 in the range measured experimentally. All of the
RANS runs were performed on the VGRIDns grid, since RANS

calculations on that grid were shown previously to match well
with a more fine two dimensional structured grid~see @1# and
Forsythe et al.@30#!.

8.4 RANS Results. Figures 3 through 6 show results for the
Spalart-Allmaras and Menter’s shear stress transport/RANS mod-
els on the VGRIDns grid. As seen in Fig. 3, both models~with and
without the compressibility corrections! match the boundary layer
thickness prior to the base quite well, although the shape of the
velocity profile is slightly different than the experimental profile.
This discrepancy was previously seen by Forsythe et al.@1# and
later by Baurle et al.@34#, who performed a calculation of the
actual converging/diverging nozzle section to try to remove this
discrepancy, but it made little difference.

The base pressure is next examined in Fig. 4. The Spalart-
Allmaras model predicts far too low of a base pressure, with a

Fig. 5 Centerline velocity—RANS models

Fig. 6 Nondimensional turbulent eddy viscosity behind the base; „a… Spalart-Allmaras
model with and without compressibility corrections on VGRIDns grid; „b … shear stress
transport model with and without compressibility corrections on VGRIDns grid

Fig. 7 Vorticity contours—DES Spalart-Allmaras model on the
fine structured grid
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slight radial variation. The compressibility correction has a strong
effect, putting the results much closer to the experiments, but
introducing a larger radial variation. The SST model without the
compressibility corrections does about as well as SA with the
correction, and with a flatter radial profile. The compressibility
correction then further improves the pressure level; however, it
again introduces more radial variation.

The centerline velocity behind the base is next plotted in Fig. 5.
The SA model greatly underpredicts the shear layer reattachment
location. The peak reverse velocity is overpredicted by the models
with compressibility corrections, which helps explain the in-
creased variation in pressure along the base. Streamlines flowing
along the centerline towards the base stagnate on the center of the
base, leading to the high pressure seen there. The large reduction
in turbulent eddy viscosity seen in Fig. 6~a! has the effect of
increasing the recirculation region size, which makes the turning
angle at the base more realistic, but allows a larger reverse veloc-
ity, which leads to a larger variation in pressure. The SST model
starts with much lower turbulent viscosity than SA, as seen in Fig.
6~b!, which allows for the larger recirculation region as seen in
Fig. 5. The compressibility correction further reduces the levels of
eddy viscosity, increasing the size of the recirculation region fur-
ther, and increasing the peak reverse velocity.

8.5 DES Results. Figure 7 shows an instantaneous plot of
vorticity contours in a cross-plane behind the base for DES based
on Spalart-Allmaras on the fine structured grid. Although the
shear layer roll up was not captured, the turbulent structures seem
otherwise well resolved. This figure as well as subsequent plots of
resolved turbulent kinetic energy provide evidence that DES is
operating in LES mode behind the base. Three-dimensional volu-
metric rendering of isosurfaces of vorticity showed numerous
small scale structures behind the base.

Boundary layer profiles for all DES runs are plotted in Fig. 8.
The coarse and fine structured grids fail to predict the proper
boundary layer thickness due their large average firsty1 values of
14 and 7, respectively; coarse streamwise grid spacing also may
have contributed to this underprediction. All other profiles match
reasonably well.

The base pressure is plotted in Fig. 9. The coarse structured grid
is clearly underresolved. The compressibility correction aids the
result somewhat, but not significantly. The fine structured grid
underpredicts the base pressure by about 10% but has the flat
pressure profile observed experimentally.~Note that the base pres-
sure for this grid was plotted incorrectly in Forsythe et al.@53#.!
The poor boundary layer prediction on this grid is a possible
source of error. Both unstructred grid DES-SA results are in good
agreement with the experiments, and are insensitive to the pres-
ence of the compressibility corrections. The SST results overpre-
dict the base pressure by 5%–10%, depending on the grid. The
compressibility correction moves the pressure towards the experi-
mental values.

The centerline velocity plotted in Fig. 10 exhibits a similar
behavior as the grid is varied. The coarse structured grid is again
underresolved, giving a high peak reverse velocity too close to the
base. The fact that LES without an explicit subgrid scale model
~predicted by Forsythe et al.@1#! gives a much better result for
base pressure and centerline velocity on the coarse grid compared
with DES shows that there is a significant effect of the model on
this grid, in addition to the numerical errors. The nature of DES is
that the coarse grid limit yields a RANS model. As the grid is
refined, the eddy viscosity will drop lower than a RANS predic-
tion, yet may still be too high to allow an LES prediction.

Mach contours are compared to the experiments for various
models and grids in Figs. 11. Besides the coarse grid, the results
all look quite similar, even when comparing SA-based DES to
SST-based DES, and the fine structured vs. an unstructured grid.
Figure 11 shows that DES is able to predict a realistic shear layer
growth on the various grids. Plots of resolved turbulent kinetic
energy~Fig. 12!, however, suggest that the shear-layer rollup is
not being resolved. The shear-layer growth is aided, however, by
the presence of turbulent eddy viscosity as seen in Fig. 13. The
turbulent kinetic energy is underpredicted on all grids~Fig. 12!,
especially in the shear layer. Grid refinement should enhance the

Fig. 8 Boundary layer profile 1 mm prior to the base—DES
model

Fig. 9 Pressure along the base—DES model

Fig. 10 Centerline velocity—DES model
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Fig. 11 Mach contours behind the base; „a… DES Spalart-Allmaras on the coarse struc-
tured grid versus Experiment †9‡; „b… DES Spalart-Allmaras on the fine structured grid
versus Experiment †9‡; „c… DES Spalart-Allmaras on the Gridgen grid versus Experiment
†9‡; „d… DES shear stress transport model on Gridgen grid versus Experiment †9‡
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agreement with the experiments, but since some turbulence is still
being modeled~especially in the shear layer!, the mean flow prop-
erties are reasonable. The fine structured grid underpredicts the
shear layer growth rate, which is likely to be the cause for the
underprediction of the base pressure. This could be because the
structured grid has finer grid resolution in the shear layer, lower-
ing the eddy viscosity below RANS levels. However, as previ-
ously mentioned, the shear layer rollup is not being resolved, so
the model is not acting in LES mode.

It should be noted that the VGRIDns grid was previously used
by Forsythe et al.@1#, yet the current results are much improved
with the standard model constant,Cdes50.65. This is partially
attributed to the redefinition of the length scale on tetrahedral cells
as discussed previously. Part of the improvement also comes from
improvements in the time-accuracy of Cobalt over Cobalt60. This
evaluation is based on the fact that a calculation was performed
using Cobalt60 after the redefinition of the length scale, with base

Fig. 12 Resolved turbulent kinetic energy behind the base; „a… DES Spalart-Allmaras
model on the coarse structured grid versus Experiment †9‡; „b… DES Spalart-Allmaras
model on the fine structured grid versus Experiment †9‡; „c… DES Spalart-Allmaras model
on the Gridgen grid versus Experiment †9‡

920 Õ Vol. 124, DECEMBER 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



pressures and levels of resolved turbulent kinetic energy some-
where between that seen in Forsythe et al.@1# and the current
study.

Figure 14 shows turbulent statistics for DES-SA on the Gridgen
grid. Although underpredicting the statistics in general, the agree-
ment is fair. The resolved radial turbulence intensity is furthest
from the experiments.

9 Conclusions
A detailed testing of DES based on both the Spalart-Allmaras

and the shear stress transport model was conducted on the super-
sonic axisymmetric base of Herrin and Dutton@9#. The grids were
constructed so that the boundary layer would be treated fully in
RANS mode. Comparisons were made to the Spalart-Allmaras
and shear stress transport RANS models and experiments. Com-
pressibility corrections were examined for the RANS and DES
models.

Both the SA and the SST RANS models seem unable to realis-
tically model this flowfield, with Mach contours for both models
being in significant disagreement with the experimental data.
Compressibility corrections aid the models in predicting a more
realistic level of pressure on the base, but increase the radial varia-
tion of the pressure due to the increased centerline velocity. DES,
in contrast, predicts a flat pressure profile due to its ability to
model the unsteady flow that helps equalize the base pressure.
DES successfully predicted the boundary layer thickness prior to

the base by operating in RANS mode in the boundary layer, while
retaining LES’s ability to predict the flat base pressure profile.

Calculations were performed on two structured and two un-
structured grids to examine the effect of grid resolution and topol-
ogy. Good agreement with experimental base pressure was ob-
tained on all but the coarse structured grid. The coarse grid DES
results were actually quite similar to the Spalart-Allmaras RANS
results with the compressibility correction active on a fine grid.
This highlights the need for assessing the resolution of the grid—a
fact that is true for RANS, and crucial for DES. The use of the
DES modification drew down the eddy viscosity low enough to
improve the poor Spalart-Allmaras RANS results, mimicking a
compressibility correction, yet not low enough to allow for good
LES content. The fine structured grid DES underpredicted the
boundary layer thickness prior to the base due to coarse wall
normal spacing. This grid also underpredicted the base pressure
by about 10%, although this is not necessarily due to the under-
prediction of the boundary layer thickness. thickness is quite small
compared to the base diameter. Unstructured grids gave solutions
that agreed well with the experimental data.

The sensitivity of DES on the underlying RANS model was
examined by running both Spalart-Allmaras and SST-based DES
with and without compressibility corrections. Spalart-Allmaras-
based DES predicted the base pressure to within a few percent on
the unstructured grids. SST-based DES predicted higher pressures
than the experiments~the worst disagreement was 10%!. Com-
pressibility corrections helped improve the agreement with base

Fig. 13 Nondimensional turbulent eddy-viscosity behind the base; „a… DES Spalart-
Allmaras model with and without compressibility corrections on Gridgen grid, „b… DES
shear stress transport model with and without compressibility corrections on Gridgen
grid
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pressure for the SST-based DES, however, the turbulent eddy-
viscosity contours were so similar it is difficult to understand the
reason for the improvement. Compressibility corrections had a
negligible impact on Spalart-Allmaras-based DES. The lack of
sensitivity of DES to the underlying RANS model is likely due to
the fact that the role of the RANS model within DES is confined
mainly to the boundary layer and the thin shear layers.

The results of this study show that it is now possible to accu-
rately model axisymmetric base flowfields using appropriate nu-

merical techniques, turbulence models, and grids. While RANS
turbulence models give relatively poor results for these flowfields,
and pure LES models are excessively expensive to use if the
boundary layer is to be resolved, the hybrid DES models were
able to give good comparisons with available experimental data.
The DES results also show, however, that careful attention must
be paid to grid size and density, and boundary conditions~espe-
cially the inflow boundary layer profile!. While this study was
able to sufficiently match the detailed flowfield data of Herrin and

Fig. 14 Resolved turbulent statistics on the Gridgen grid; „a… resolved streamwise turbu-
lent intensity versus Experiment †9‡, „b… resolved radial turbulence intensity versus Experi-
ment †9‡, „c… resolved Reynolds stress versus Experiment †9‡
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Dutton, including turbulence quantities in the baseflow region,
there is still a lack of experimental data for CFD validation—
similar data should be taken at a variety of Mach numbers, Rey-
nolds numbers, and for geometries with and without boattails. In
spite of this, however, it is apparent that the accurate computation
of turbulent base flow at supersonic speeds is now possible.
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Detached-Eddy Simulations and
Reynolds-Averaged Navier-Stokes
Simulations of Delta Wing
Vortical Flowfields
An understanding of vortical structures and vortex breakdown is essential for the devel-
opment of highly maneuverable vehicles and high angle of attack flight. This is primarily
due to the physical limits these phenomena impose on aircraft and missiles at extreme
flight conditions. Demands for more maneuverable air vehicles have pushed the limits of
current CFD methods in the high Reynolds number regime. Simulation methods must be
able to accurately describe the unsteady, vortical flowfields associated with fighter air-
craft at Reynolds numbers more representative of full-scale vehicles. It is the goal of this
paper to demonstrate the ability of detached-eddy Simulation (DES), a hybrid Reynolds-
averaged Navier-Stokes (RANS)/large-eddy Simulation (LES) method, to accurately pre-
dict vortex breakdown at Reynolds numbers above 13106. Detailed experiments per-
formed at Onera are used to compare simulations utilizing both RANS and DES
turbulence models.@DOI: 10.1115/1.1517570#

Introduction
The delta wing flowfield is dominated by vortical structures, the

most prominent of which are the leading-edge vortices. As the
angle of attack increases, these leading-edge vortices experience a
sudden disorganization, known as vortex breakdown, which can
be described by a rapid deceleration of both the axial and swirl
components of the mean velocity and, at the same time, a dra-
matic expansion of the vortex core. Henri Werle´ first photo-
graphed the vortex breakdown phenomenon in 1954, during water
tunnel tests of a slender delta wing model at Onera@1#. This work
was quickly confirmed by Peckham and Atkinson@2#, Elle @3#,
and Lambourne and Bryer@4# and spawned a large number of
experimental, computational, and theoretical studies which con-
tinue today. These investigations led to the development of several
theories governing vortex breakdown, although none have been
universally accepted@5–9#. Despite this lack of a unified theoret-
ical interpretation, several forms of vortex breakdown have been
identified,@7,10# ~i.e. bubble, helical, etc.!, and the global charac-
teristics of the phenomena are understood. During the breakdown
process, the mean axial velocity component rapidly decreases un-
til it reaches a stagnation point and/or becomes negative on the
vortex axis. This stagnation point, called the breakdown location,
is unsteady and typically oscillates about some mean position
along the axis of the vortex core@11,12#. As the angle of attack is
increased, the mean vortex breakdown location moves upstream
over the delta wing~from the trailing edge toward the apex!.

The leading-edge vortex over a slender delta wing at angle of
attack is principally inviscid. Unfortunately, the location of the
vortex is strongly affected by a secondary vortex formed by the
inter-relationship between the surface boundary layer and the
leading-edge vortex. In addition, the vortex breakdown phenom-
enon creates turbulent kinetic energy that must be either modeled
properly or resolved. Several researchers@13–15#, have demon-
strated that typical turbulence models create excessive turbulent
eddy viscosity in the leading-edge vortex core, which significantly
alters the flowfield, and in some cases eliminates breakdown,

which is observed experimentally at high Reynolds numbers. For
these reasons, an accurate prediction of the flowfield over a slen-
der delta wing at high angles of attack and high Reynolds num-
bers must correctly capture the boundary layer, leading-edge and
secondary vortices, and turbulent kinetic energy.

Gordnier@13# demonstrated the inability of a typical Reynolds
averaged Navier-Stokes~RANS! methods (k2«) to accurately
predict high Reynolds number vortical flowfields, by computing
solutions of a 65 deg delta wing at 15 deg and 30 deg angle of
attack at a root-chord-based Reynolds number of 3.67 million. He
applied a correction to thek2« turbulence model proposed by
Menter @16# to limit the production of eddy viscosity in regions
where the vorticity overwhelms the strain rate. For the 15 deg
angle of attack case he found a significant improvement in com-
parison with experiment when applying the correction. Unfortu-
nately, he also found that at the 30 deg angle of attack case that
exhibits vortex breakdown, the model produced a mean flow so-
lution with a bubble-type breakdown when the experiments
showed a helical-type breakdown. He postulated that the RANS
formulation would only predict the mean flow characteristics even
when an unsteady RANS simulation was being performed.
Dacles-Mariani@17# proposed a similar correction to the Spalart-
Allmaras turbulence model but was shown by Murman and Chad-
erjian @14# to have a limited improvement when applied to the
same 65 deg delta wing case if the model was based on production
limiting when the vorticity magnitude was in direct proportion to
the strain rate. He also found the computed solution’s comparison
with experiment degraded with improved grid resolution on the
delta wing studied. Murman@15# developed a Galilean invariant
and computationally efficient correction to the Spalart-Allmaras
turbulence model called ‘‘vortex filtering.’’ His vortex filtering
method utilized the velocity gradient tensor to determine whether
the vorticity is generated inside or outside of the boundary layer
and limit the production of eddy viscosity outside of the boundary
layer in a free vortex. Murman@15# applied the method to a
tangent-ogive cylinder and demonstrated successful comparison
with experiments for steady-state pressures on the delta-wing sur-
face. Spalart and Shur@18# proposed corrections to the baseline
Spalart-Allmaras model to account for streamline curvature and
system rotation and applied it successfully to wing tip vortices.
Unfortunately, the formulation has not been adopted by many re-
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searchers due to its complicated formulation and large computa-
tional requirements. The advantage of Spalart and Shur’s@18#
correction to the Spalart-Allmaras turbulence model is its applica-
bility to a very general set of problems. None of these corrections
were shown to accurately reproduce the experimentally observed
unsteady vortex breakdown phenomenon.

Even with the corrections described above, the turbulence mod-
els employed in RANS methods are designed to model, rather
than resolve, the entire spectrum of turbulent motions and have
been shown to be inadequate in capturing the flows characterized
by massive separation and inherent unsteadiness. Unsteady mas-
sively separated flows are characterized by geometry-dependent
and three-dimensional turbulent eddies; it is probable that these
eddies are what make RANS turbulence models inadequate for
these flowfields. There are many instances where the time-
accurate description of these three-dimensional turbulent struc-
tures must be accurately determined~i.e., aeroelasticity, aeroa-
coustics, engine inlet design!. If the primary goal is to simulate
the unsteady loads on surfaces, a new approach must be
developed.

To overcome the deficiencies of RANS models for predicting
massively separated flows, Spalart et al.@19# proposed detached-
eddy simulation~DES! with the objective of developing a numeri-
cally feasible and accurate approach combining the most favor-
able elements of RANS models and LES. The primary advantage
of DES is that it can be applied at high Reynolds numbers~as can
RANS techniques!, but also resolve geometry-dependent, un-
steady three-dimensional turbulent motions as in LES. DES pre-
dictions to date have demonstrated favorable results,@20–22#,
forming one of the motivations for this research. The specific aim
of this work is to apply and assess RANS and DES methods for
the problem of vortex breakdown over slender delta wings at high
Reynolds number.

Numerical Method
In this section a brief description of the numerical method is

provided with full details of the computational scheme and the
solution method presented in Ref.@23#. The delta wing surface
description is based on Onera’s experimental sharp-edged, 70 deg
sweep angle~L! delta wing with a root chord~c! of 950 mm~Fig.
1!. The model has a wingspan of 691.5 mm at its trailing edge, is

20 mm thick, and is beveled on the windward side at an angle of
15 deg to form a sharp leading edge. Solutions were obtained for
a freestream velocity of 24 m/s, an angle of attack of 27 deg, and
a freestream pressure and temperature resulting in a Reynolds
number of 1.563106. The numerical simulation matched the
angle of attack, Reynolds number, and Mach number of the wind
tunnel experiments,@12,24#.

Solutions are computed using the commercially available solver
Cobalt. Cobalt is an unstructured finite volume method developed
for solution of the compressible Navier-Stokes equations with de-
tails of the approach described in Ref.@23#. The method is a
cell-centered finite volume approach applicable to arbitrary cell
topologies including hexahedrals, prisms, and tetrahedra. The spa-
tial operator uses an exact Riemann solver, least-squares gradient
calculations using QR factorization to provide second-order accu-
racy in space, and TVD flux limiters to limit extremes at cell
faces. A point implicit method using analytic first-order inviscid
and viscous Jacobians is used for advancement of the discretized
system. A Newton subiteration scheme is employed to improve
time accuracy. All solutions were computed with at least two
Newton subiterations, allowing second-order accuracy in both
time and space.

The computational mesh used in all simulations, unless other-
wise noted, is a 2.453106 cell, unstructured mesh, generated with
the software packages GridTool,@25#, and VGRIDns,@26#. It con-
sists of an inner region of 13 layers of prisms for the boundary
layer, with a wall normal spacing in viscous wall units less than 1,
and an outer region of tetrahedra. The prism dimensions on the
surface were a factor of approximately 200 times larger than the
wall normal dimension. Figure 2 depicts one of the delta wing
grids used for this study. Additional grids were used to perform a
grid sensitivity study and are described in detail in a later section.
As is evident in the figure, cells are clustered in the boundary
layer and in the region of the vortex core. Also, the grid represents
only the half-span of the delta wing and does not include the sting
or wind tunnel walls of the experiment. All simulations of the
current work are for the half-span geometry.

Turbulence Models. Cobalt has several choices of turbulence
models including Spalart Allmaras~SA!, @27#, and shear stress
transport~SST!, @28#, RANS, as well as DES based on either SA
or SST models,@20#. In addition, an SA turbulence model with
approximate rotation corrections~ASARC!, @17,29#, was imple-
mented for the current study. The following subsections describe
the turbulence models used for comparison in the current work,
and provides references for more detailed descriptions.

Spalart-Allmaras „SA… Turbulence Model. The Spalart-
Allmaras@27#, one-equation turbulence model solves a single par-
tial differential equation for a working variable related to the tur-
bulent viscosity. The differential equation is derived by using
empiricism arguments of dimensional analysis, Galilean invari-
ance, and selected dependence on the molecular viscosity@27#.
The model includes a wall destruction term that reduces the tur-
bulent viscosity in the laminar sublayer and the log layer. Details
of the model implementation and all coefficients are given in Ref.
@29#. Solutions presented in the current work using the Spalart-
Allmaras model are referred to as SA.

Approximate SA-Rotation Correction Model. The Dacles-
Mariani @17#, correction to the Spalart-Allmaras~SA! turbulence
model was implemented to provide a comparison case for the
DES method. The modification to SA includes a destruction term
in the modified vorticity based on the magnitude of vorticity and
the strain rate. The modified vorticity is expressed as

S̃[S1
ñ

k2d2 f v21Cvor min~0,Ŝ2S!

whereS is the magnitude of the vorticity,Ŝ is the strain rate,ñ is
the modified turbulent viscosity,k is the turbulent kinetic energy,
d is the distance to the nearest wall,f v2 is defined in Ref.@17#,

Fig. 1 Sketch of the experimental delta wing model of Onera
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andCvor is a constant taken to be 4 for all runs. It should be noted
that this value ofCvor provides a very strong correction—when
the strain rate magnitude is 3/4 of the vorticity magnitude, the
production term will be essentially zero. This allows vortical, tur-
bulent flows to be calculated with a RANS turbulence model with-
out too much dissipation being added to the vortex core, which
typically eliminates the vortex breakdown phenomenon seen in
experiments. The SA model with the approximate rotation correc-
tions will be referred to as ASARC in the results section.

Menter’s Shear Stress Transport Model. Menter’s shear
stress transport model@28#, is a hybrid of thek2« and k2v
turbulence models. Typicalk2v models are well behaved in the
near wall region where low Reynolds number corrections are not
required. However, they are generally sensitive to the freestream
values ofv. On the other hand,k2« models are relatively insen-
sitive to freestream values, but behave poorly in the near-wall
region. Menter proposed a hybrid model. The SST model uses a
parameterF1 to switch fromk2v to k2« in the wake region to
prevent the model from being sensitive to freestream conditions.
The governing differential equations, including a compressibility
correction, along with the complete set of constants, are detailed
in Ref. @29#.

Detached-Eddy Simulation. The DES model was originally
based on the Spalart-Allmaras one-equation RANS turbulence
model ~detailed above, with a more detailed presentation in Ref.
@19#!. The wall destruction term presented above is proportional to
( ñ/d)2. When this term is balanced with the production term, the
eddy viscosity becomes proportional toŜd2. The Smagorinski
LES model varies its subgrid-scale~SGS! turbulent viscosity with
the local strain rate, and the grid spacing described bynSGS

}ŜD2, whereD5max(Dx,Dy,Dz). If d is replaced withD in the
wall destruction term, the SA model will act as a Smagorinski
LES model. To exhibit both RANS and LES behavior,d in the SA
model is replaced by

d̃5min~d,CDESD!, CDES50.65

Whend!D, the model acts in a RANS mode and whend@D the
model acts in a Smagorinski LES mode. Therefore, the model

switches into LES mode when the grid is locally refined. DES was
implemented in an unstructured grid method by Forsythe et al.
@21#. They determined theCDES constant could be 0.65, consistent
with the structured grid implementation of Shur et al.@30#, when
the grid spacingD was taken to be the longest distance between
the cell center and all of the neighboring cell centers. The DES
turbulence model based on the SA RANS model is referred to as
SADES in all following sections.

Strelets@20# introduced a DES model based on Menter’s shear
stress transport~SST! model~called SSTDES in all following sec-
tions!. The DES modification to the SST model replaces the
length scale,l k2v , by

l̃ 5min~ l k2v ,CDESD!

where

l k2v5
k1/2

b* v
, b* 50.09, Ck2«

DES50.61, Ck2v
DES

50.78,

in the dissipation term of thek-transport equation.

Experimental Method and Facilities
The experimental data used for comparison were obtained by

Mitchel et al.@12# from ONERA’s F2 wind tunnel. ONERA’s F2
wind tunnel has a rectangular test section with a width of 1.4 m, a
height of 1.8 m, and a length of 5 m. It is powered by a 680 kW
DC motor that drives a fan with blades spanning 3.15 m and
provides a maximum freestream velocity in the test section of 105
m/s. A cooling system in the closed-return portion of the wind
tunnel facility maintains a constant freestream temperature in the
test section. The relative freestream velocity,DU0 /U0 , is esti-
mated to have an accuracy of 1%, while the mean intensity of
turbulence has an accuracy of 0.1%,@12#.

In the wind tunnel, the delta wing model depicted in Fig. 1 was
mounted on a sting with a horizontal support and flexible joint for
adjusting the angle of attack, with an accuracy of60.05 deg. The
horizontal support was manipulated in height along a vertical col-
umn so as to maintain the model close to the center axis of the test

Fig. 2 Unstructured prism Õtetrahedra grid with vortex core refinement, 2.45 Ã106 cells
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section. The model was mounted in the test section with no yaw
angle with respect to the freestream flow~estimated accuracy of
60.1 deg!. The experimental dataset consists of steady surface
pressure data on the leeward surface of the delta wing and laser
Doppler velocimeter data in planes parallel to the top surface,
perpendicular to the top surface spanwise, and perpendicular to
the top surface along the vortex core@12#.

Results
This section presents results of the numerical simulations, as

well as comparison of these simulations to the Onera experimental
data. All cases were run at a freestream velocity of 24 m/s, a Mach
number of 0.069, an angle of attack of 27 deg, and other
freestream conditions consistent with a Reynolds number of
1.563106. No attempt was made to model transition from laminar
to turbulent flow on the delta wing. In all cases the spatial and
temporal operators were second-order accurate. Typical unsteady
simulations were run for 9000 time-steps, with an iteration plus
two subiterations per time-step. The baseline time-step, nondi-
mensionalized by the root chord and freestream velocity, was
0.005.

Time Accuracy Study. When computing solutions for un-
steady flowfields such as vortex breakdown, it is important to
determine the degree to which the solution is time accurate. Since
a major goal is to reproduce unsteady surface loads, the unsteady
normal force was used to determine the time accuracy of the
simulations. The delta wing normal force was analyzed with
MATLAB’s power spectral density~PSD! function. The PSD
power was scaled by the number of iterations analyzed and the
output frequency was nondimensionalized by the root chord and
freestream velocity, giving the Strouhal number, St5 f c/U` . To
show a convergence of frequency with time-step, the data from
SADES simulations was plotted versus the inverse of the Strouhal
number ~or the wave number! and the wave number with the
highest power was tracked to determine if there was any change
with respect to time step. After analyzing the time-accurate data
and correlating the dominant frequency with structures in the
flowfield, it was determined that the wave number chosen is cre-
ated by the formation of alternating vortical structures shed from
the blunt trailing edge. If this dominant frequency is scaled by the
trailing edge base height instead of the root chord, the resulting St
number is approximately 0.21, a typical shedding frequency. As
can be seen in Fig. 3, as the nondimensional time step is halved,

the wave number decreases. For the three largest time-steps, a
change in the wave number is approximately equivalent to the
decrease in time-step; the three most refined time steps rapidly
approach an asymptotic value of wave number.

Cobalt also utilizes Newton subiteration to improve time accu-
racy. In the previous cases, an initial iteration plus two Newton
subiterations were performed. To determine the effect of varying
the number of subiterations, four different subiteration values
were used with a nondimensional time step of 0.005 and the re-
sults are presented in Fig. 3, demonstrating that the wave number
is reduced as the number of subiterations is increased. Figure 3
displays the primary wave number versus the time-step and num-
ber of subiterations. One can see from the figure that the
asymptotic value of the wave number is approximately 0.1 (St
510). The baseline nondimensional time step of 0.005 and two
subiterations results in a wave number of 0.188, and were used for
the majority of the simulations hereafter. Although the choices of
time step and number of Newton subiterations result in a simula-
tion with a dominant wave number different than the asymptotic
value, the simulation is qualitatively correct and can be used to
analyze the effect of changing the turbulence model if the choices
are used consistently.

Grid Resolution Study. A detailed grid resolution study was
performed and documented in Ref.@31#. The baseline grid of
2.453106 cells discussed above is approximately equivalent to
the medium grid of Ref.@31#. Figure 4 depicts a normal force PSD
plot comparison between course, medium, and fine grids of 1.2
3106, 2.73106, and 6.73106 cells, respectively. The grid refine-
ment study was accomplished by first developing a consistent set
of three grids. The medium grid, similar to the baseline grid dis-
cussed above, was produced first. The coarse and fine grids were
developed by modifying the growth rates by either a factor of a
square root of two or the inverse of a square root of two. This
produces a set of grids with cell sizes in the vortex breakdown
region varying by a square root of two in each coordinate direc-
tion. The viscous region is approximately the same in the wall
normal direction for each grid but the surface distribution was
modified by the same scaling factor. A nondimensional time-step
of 0.0025 was used for the medium grid and the coarse and fine
grid time-steps were a factor of square-root-two larger and
smaller, respectively. Figure 4 demonstrates the ability of the me-
dium grid to capture the dominant frequency of 10 within 6%.
Although higher frequency content is improved on the fine grid
~Fig. 4!, the medium grid seems sufficient to explore the effects of
the various turbulence models.

Fig. 3 Wave number convergence for a variation in time-step
and subiteration using the SADES turbulence model and the
baseline grid

Fig. 4 MATLAB power spectral density analysis of normal
force for three grids
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Figure 5 depicts the resolved turbulent kinetic energy along the
core, nondimensionalized by the freestream velocity squared, for
the four grids used in the current work. The medium and fine grids
capture the vortex breakdown position, as measured by a sharp
rise in resolved turbulent kinetic energy, but are a factor of two
different in peak resolved turbulent kinetic energy. The experi-
ments documented in Ref.@12# show a peak value of nondimen-
sional turbulent kinetic energy of 0.5, which is within 10% of the
fine-grid peak. The baseline grid core resolved turbulent kinetic
energy peak is within 10% of the medium grid peak but the vortex
breakdown position is upstream of the medium grid breakdown
position. This difference can be attributed to the larger time-step
and smaller number of subiterations, which produces larger tem-
poral error. Nevertheless, the comparison is in close enough
agreement to use the baseline grid, time-step, and number of sub-
iterations to perform a valid comparison between the various tur-
bulence models.

Turbulence Model Study. After determining that the rel-
evant vortical flow features were being captured by the grid, and
that a reasonable level of time accuracy was obtained, a study of
various RANS and DES turbulence models was accomplished.
Figure 6 depicts the normal force PSD power versus Strouhal
frequency for the SA, SST, ASARC, SADES, and SSTDES tur-
bulence models. All cases were run for at least 9000 iterations.
Transients from the initiation of the run were eliminated from the
datasets analyzed by eliminating the first 1000 iterations in the
frequency analysis.

Several conclusions can be made from Fig. 6. First, the SA and
SST RANS models used widely in industry are not able to capture
the majority of the frequencies in the spectrum. In the case of both
RANS models, all frequencies, except the dominant frequency
previously discussed, have a power which could be reasonably
associated with random noise. On the other hand, the ASARC
model compares surprisingly well with the DES methods. This is
most likely due to the fact that the rotation correction is very
effective in eliminating the affects of turbulence dissipation in the
core of the vortex. The only range of frequencies the ASARC
model is not able to capture as well as the DES methods is 3
,St,5, where the power is not as high as the DES methods.
Finally, both DES methods are able to capture the full range of
frequencies resident in the simulation of delta wings at high
angles of attack. This additional frequency content not captured
by the ASARC, SA, or SST turbulence models is most likely
coming from the post-breakdown LES resolved eddies. One fur-

ther note concerning the ASARC model is the fact that although it
is able to capture the high Reynolds number vortex breakdown
phenomena fairly well, the simulation has little hope of improving
with a refinement in grid, as is the case with the DES methods,
since RANS models have no grid dependence. Also, ASARC is
only an improvement in typical RANS models for vortical flows,
while simulations with either DES method can also simulate mas-
sive separation not associated with strong vortices@22#.

Figures 7–10 depict the flowfields for all of the turbulence
models except the SST RANS model~the SST RANS model re-
sults are not visibly different than the SA RANS model!. The left
side of the figure depicts an iso-surface of vorticity magnitude and
the right side depicts an iso-surface of total pressure. All of the
figures use consistent iso-surface values. Notice the SA model’s
inability to predict the vortex breakdown core enlargement com-
monly seen in experiments,@12#. Also, note the similarity between
the ASARC and DES solutions. It is a matter of further research
whether the ASARC method is over correcting for the streamline
curvature effects due to the simplified formulation. It is apparent
that the two DES methods are consistent in their ability to capture
vortex breakdown, the post-breakdown helical structures, and the
tertiary vortices observed in experiments,@12#.

Fig. 5 Resolved turbulent kinetic energy along the vortex core
scaled by the freestream velocity squared for four different
grids

Fig. 6 MATLAB power spectral density analysis of the un-
steady normal force for various turbulence models

Fig. 7 Instantaneous iso-surfaces of vorticity magnitude „left
side … and total pressure „right side … for the Spalart-Allmaras
turbulence model
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One of the most difficult quantities to capture accurately in a
numerical simulation is the turbulent kinetic energy. Figure 11
demonstrates the ability of the simulations with various turbulence
models to produce the resolved turbulent kinetic energy in the
core of the vortex aft of the vortex breakdown location. Figure 9
is a plot of resolved turbulent kinetic energy, nondimensionalized
by the freestream velocity squared, versus the location along the
chord. All of the turbulence models have a value of resolved tur-
bulent kinetic energy of zero prior to the vortex breakdown posi-
tion. Aft of the breakdown position, the two RANS methods still
have essentially zero-resolved turbulent kinetic energy along the

core. The ASARC, SADES, and SSTDES turbulence models all
predict very similar resolved turbulent kinetic energy profiles.

The probable cause of typical turbulence models inability to
accurately capture vortex breakdown is the excessive amount of
eddy viscosity they generate in the core of strong vortices. Figure
12 depicts the eddy-viscosity ratio along the vortex core as a
function of chordwise position. The SA RANS method produces
extremely large values of eddy viscosity all along the vortex core.
The SST model is much more limited in its production of eddy
viscosity prior to vortex breakdown but then produces similarly
large values of eddy viscosity post-breakdown. The ASARC
model virtually eliminates the eddy viscosity produced pre-
breakdown but then produces significantly larger values post-
breakdown. The SADES model produces fairly large values of
eddy viscosity pre-breakdown but not post-breakdown due to the
grid refinement in the post-breakdown region. The SSTDES

Fig. 8 Instantaneous iso-surfaces of vorticity magnitude „left
side … and total pressure „right side … for the Spalart-Allmaras
turbulence model with approximate rotation corrections

Fig. 9 Instantaneous iso-surfaces of vorticity magnitude „left
side … and total pressure „right side … for the Spalart-Allmaras
detached eddy simulation turbulence model

Fig. 10 Instantaneous iso-surfaces of vorticity magnitude „left
side … and total pressure „right side … for the shear stress trans-
port detached eddy simulation turbulence model

Fig. 11 Resolved turbulent kinetic energy along the vortex
core scaled by the freestream velocity squared for five different
turbulence models
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method produces limited values pre and post-breakdown. Figure
12 demonstrates the need for a DES method with rotation correc-
tions in the RANS part of the hybrid method even though post-
breakdown is in LES mode because of the grid resolution.

Comparison With Experiment. The experimental data of
Mitchel et al.@12# was next used to determine if there is qualita-
tive agreement between the experiments and the simulations. It
should be noted that the grids used in the numerical simulations
did not model either the sting or the wind tunnel walls. Since the
Onera model created a blockage of approximately 14% at a 24
deg angle of attack, it is expected that there will be some disagree-
ment between the experiments and the simulations since tunnel
blockage typically manifests itself as a change in the effective
angle of attack. Figure 13 depicts the vortex breakdown position
as a function of angle of attack for the experiments. The variation
in vortex breakdown position ranged from 60% to 72% in the
experiments. Figure 14 depicts the streamwise velocity along the
core of the vortex as a function of chord location. A very common
method of defining vortex breakdown position is when the stream-
wise component of velocity is equal to zero. All of the turbulence

models except for the SST RANS model produced vortex break-
down positions within the range of the experiments, with the SST
RANS method upstream by approximately 10%. This is surprising
when considering the vorticity iso-surface differences between the
models presented in Figs. 7–10. Although the actual vortex break-
down position seems to be predicted well by the RANS methods,
the overall characteristics of the breakdown structure are not con-
sistent with the experiments.

Figure 15 depicts the resolved turbulent kinetic energy contours
of ASARC, SSTDES, and SADES~including a time-step and grid
variation! as well as the experimentally determined turbulent ki-
netic energy contours in a plane essentially parallel to the surface
but inclined through the vortex core. The ASARC simulation
achieved a peak value similar to the experiments but the region of
high intensity extends further aft than the experiment. The SST-
DES method shows general agreement in the shape of the con-
tours but does not achieve the peak value of turbulent kinetic
energy. The SADES method shows an ability to match the experi-
ment in shape and improve the peak comparison with grid
refinement.

Figure 16 depicts cross-plane contours of vorticity at two lon-
gitudinal stations for the LDV experiments, and instantaneous
contours for the SADES method on the medium and fine grids.
The overall shape of the vorticity contours is captured very well
by the SADES method at both stations, and the core vorticity
magnitude approaches the experiment as the grid is refined at the
500 mm station. At the 600 mm station, the experiment does not
show vortex breakdown for the case presented, whereas post-
breakdown is observed for the particular instant of time chosen for
the simulation. An increase in vorticity level is observed with grid
resolution at the 600 mm station as well.

Conclusions and Recommendations
DES simulations of a delta wing experiencing vortex break-

down were successfully computed and compared to RANS simu-
lations and an experiment. These solutions were shown to be sen-
sitive to time accuracy in the frequency domain, but achieved an
asymptotic solution as time step was reduced. The SA and SST
typical RANS turbulence models were shown to be inadequate in
capturing the physics of vortex breakdown at high Reynolds num-
ber, whereas, both DES turbulence models and the ASARC tur-
bulence model captured the spectrum of frequencies and com-
pared well with the experimental data.

Fig. 12 Eddy-viscosity ratio along the vortex core for five dif-
ferent turbulence models

Fig. 13 Chord location of vortex breakdown as a function of
angle of attack from the experiments of Mitchell et al. †24‡

Fig. 14 Streamwise velocity along the vortex core as a func-
tion of chord location
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Fig. 15 Longitudinal plane of turbulent kinetic energy nondimensionalized by the freestream velocity squared through the core
of the vortex for various turbulence models and from the experiments of Mitchell et al. †24‡ „* denotes baseline grid and nondi-
mensional time-step of 0.005 …

Fig. 16 Cross-planes of vorticity contours at two longitudinal stations from the experiments of Mitchell et al. †24‡ and SADES for
two grids
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The success of an approximate rotation correction in predicting
the vortex breakdown motivates the inclusion of Spalart’s more
general rotation correction within the DES method. The rotation
correction drives the eddy viscosity down in the vortex core, ac-
counting for the stabilizing effect of strong streamline curvature.
The DES method also drives the eddy viscosity down, but for a
different reason. As the grid spacing is reduced, DES~or LES in
general! reduces the eddy viscosity as more turbulence is resolved
on the grid, eventually approaching a direct numerical simulation
~DNS!. Inclusion of the rotation correction in a DES model may
allow the reduction of eddy viscosity in strong vortical flows on
more modest grids. The success of DES in capturing the post-
breakdown helical structures would be maintained. In summary,
the overall success of DES methods in capturing vortical flows,
combined with the previous success in capturing massively sepa-
rated flows, make them extremely useful for full aircraft solutions
at high angles of attack and flight Reynolds numbers.
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A Methodology for Simulations of
Complex Turbulent Flows
A new flow simulation methodology (FSM) for computing turbulent shear flows is pre-
sented. The development of FSM was initiated in close collaboration with C. Speziale
(then at Boston University). The centerpiece of FSM is a strategy to provide the proper
amount of modeling of the subgrid scales. The strategy is implemented by use of a
‘‘contribution function’’ which is dependent on the local and instantaneous ‘‘physical’’
resolution in the computation. This physical resolution is obtained during the actual
simulation by comparing the size of the smallest relevant scales to the local grid size used
in the computation. The contribution function is designed such that it provides no mod-
eling if the computation is locally well resolved so that the computation approaches a
direct numerical simulation in the fine grid limit, or provides modeling of all scales in the
coarse grid limit and thus approaches an unsteady RANS calculation. In between these
resolution limits, the contribution function adjusts the necessary modeling for the unre-
solved scales while the larger (resolved) scales are computed as in traditional large-eddy
simulations (LES). However, a LES that is based on the present strategy is distinctly
different from traditional LES in that the required amount of modeling is determined by
physical considerations, and that state-of-the-art turbulence models (as developed for
Reynolds-averaged Navier-Stokes) can be employed for modeling of the unresolved
scales. Thus, in contrast to traditional LES based on the Smagorinsky model, with FSM a
consistent approach (in the local sense) to the coarse grid and fine grid limits is possible.
As a consequence of this, FSM should require much fewer grid points for a given calcu-
lation than traditional LES or, for a given grid size, should allow computations for larger
Reynolds numbers. In the present paper, the fundamental aspects of FSM are presented
and discussed. Several examples are provided. The examples were chosen such that they
expose, on the one hand, the inherent difficulties of simulating complex wall bounded
flows, and on the other hand demonstrate the potential of the FSM approach.
@DOI: 10.1115/1.1517569#

Introduction
In spite of considerable progress in computer technology, nu-

merical methods, and turbulence modeling during the last several
decades, reliable prediction of complex turbulent flows at high
Reynolds numbers remains an elusive target. Turbulent flows and,
in particular, wall-bounded flows exhibit wide ranges of spatial
and temporal scales that increase with Reynolds number. There-
fore, direct numerical simulations~DNS! are limited to relatively
low Reynolds numbers, as the number of grid points required for
DNS increases proportionally to Re3 ~Piomelli @1#!. Thus today,
DNS is used mainly as a research tool. For practical and industrial
applications, Reynolds-averaged Navier-Stokes~RANS! calcula-
tions continue to be the main tool in spite of the obvious limita-
tions of RANS, which have become clearer after their extensive
use for a wide range of applications over several decades. Clearly,
RANS calculations are not applicable where the time-dependent
behavior of the flow is of interest or when the time-dependent
behavior~either natural or imposed! has an impact on the mean
flow behavior. Thus, flows where naturally occurring, large,
highly energetic coherent structures play an important role, or
when such structures are excited by forcing, as in active flow
control ~AFC!, steady RANS calculations are not suitable. There-
fore, in recent years, so-called unsteady RANS~URANS! calcu-
lations are being employed for applications where capturing
the effect of unsteadiness or of the most energetic coherent struc-
tures in the flow are believed to be relevant for predicting the
mean flow quantities correctly. URANS has also been proposed

for AFC applications, although it is obvious that for such calcula-
tions the quality of the turbulence model and the numerical
method is of crucial importance.

Due to the limitations of DNS on the one hand, and RANS on
the other, great expectations have been placed on large-eddy simu-
lation ~LES!. Although initial progress in developing LES had
been relatively rapid, the extensive use of LES in recent years for
a wide range of flows has brought the limitations of LES clearly to
light. To date the promise of LES remains largely unfulfilled, in
particular for wall-bounded flows, which are of great relevance for
practical and scientific applications. Although LES does not re-
quire as much resolution as DNS, the savings are not significant
enough to make LES a useful tool for practical computations of
relevant flows. Even worse, in certain situations the turbulence
model employed in LES can actually do more harm than good, as
the physics of the relevant flow under investigation can be nega-
tively affected by the unphysical diffusion provided by the turbu-
lence model and/or the interaction of the diffusion introduced by
the turbulence model and the numerical diffusion caused by the
discretization error of the numerical method that is employed for
computing the resolved scales. When scrutinizing applications of
LES published in the literature, simple estimates often indicate
that the dissipation provided by the discretization error far ex-
ceeded that provided by the turbulence model, or, in other in-
stances, the grid resolution was so fine that the contribution of the
modeled subgrid scales was negligible~‘‘quasi’’-DNS, @2#!. Thus,
not surprisingly, it was proposed in the literature to give up the
subgrid-scale model altogether and let the discretization error@3#
or filtering @4# provide for the subgrid-scale modeling. Although,
and again not surprisingly, results with such ‘‘LES’’~which are
actually just coarse ‘‘DNS’’! yielded results similar to LES, this
approach will hardly help in overcoming the limitations of LES,
namely the relatively high-resolution requirements and the limita-
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tion to relatively low Reynolds numbers. As the idea of giving up
the subgrid-scale model was motivated by the disappointment
with conventional LES, this is a clear signal that LES has not yet
lived up to its original promise.

This was essentially the ‘‘state of the art’’ of simulating turbu-
lent flows in 1993 when C. Speziale and the first author of this
paper joined efforts to develop a new approach for the simulation
of turbulent flows. This team effort was proposed for the ONR
Accelerated Research Initiative~ARI! for complex turbulent flows
in 1993. Both of us were convinced at that time that the draw-
backs of traditional LES had to be overcome in order to make
LES useful for practical applications. Based on our diverse past
research focus~Speziale, development of turbulence models for
RANS calculations of complex flows, and Fasel, investigation of
transition using high-order accurate methods for DNS! we
strongly felt that LES would benefit from~i! the use of high-order
accurate codes~higher than first or second order! for computing
the resolved scales,~ii ! state-of-the-art RANS-type turbulence
models for the modeling of the subgrid scales instead of simple
eddy-viscosity models~e.g., the Smagorinsky model! that are
typically used in traditional LES, and~iii ! eliminating explicit
filtering.

The focus on the use of high order accurate numerical methods
~higher than second order! originated from our experience with
DNS of laminar-turbulent transition calculations. For a given reso-
lution, high-order methods exhibit significantly reduced amplitude
and phase errors allowing the dynamical behavior of the resolved
scale structures to be more accurately captured. In addition, the
role of the subgrid scale model can be much better evaluated by
use of higher-order methods because this allows for a much better
separation of the effects of the truncation error from the contribu-
tion of the subgrid-scale model.

To make the proposed new type of LES truly applicable for
complex flows and/or for high Reynolds numbers, we also be-
lieved that in the new approach the ‘‘transition’’ from DNS to
RANS had to be time and space-dependent and should be based
on the instantaneous and local ‘‘physical’’ resolution of the actual
computation. This idea was implemented by the use of a contri-
bution function~see below! which determines the necessary mod-
eling of the subgrid scales based on the local, physical resolution
during the actual computations.

As our approach represents a new strategy or methodology for
simulations of turbulent flows, rather than just the implementation
of another turbulence model, we called it ‘‘flow simulation meth-
odology’’ ~FSM!. As mentioned above, initial development was in
close collaboration with C. Speziale@5,6#. Unfortunately, due to
Charles’ severe illness in 1997 and his subsequent tragic death in
1999, we had to continue the development of the FSM without the
great inspiration and motivation that Charles had provided to the
joint effort in the past. Without the tragic loss, the development of
the FSM would have proceeded at a much faster pace and we
would be able to report significantly more progress in the devel-
opment of FSM. Presently the development of the FSM is still not
complete. However, all major elements of FSM have been imple-
mented and tested extensively. What is required are many more
applications to gain the necessary experience. In the present paper,
the fundamental aspects of the FSM as we see them today will be
presented. The examples of FSM applications discussed in this
paper were chosen to expose, on the one hand, the difficulties
encountered in simulations of complex turbulent flows, and, on
the other hand, demonstrate the potential of the FSM for complex
turbulent flows.

FSM was originally proposed and subsequently developed for
incompressible flows only. However, it should be noted that later
on, and initially also in collaboration with C. Speziale, we have
initiated development of the FSM for compressible flows~v. Terzi
and Fasel,@7#!. For these computations, we use the compressible
Navier-Stokes equations in primitive variables in a conservative
formulation. Initial test data indicate that FSM is equally promis-

ing for compressible flows. For space considerations, the discus-
sion in the present paper will be limited to the incompressible
case.

The Flow Simulation Methodology „FSM…

Applying averaging to the Navier-Stokes equations in incom-
pressible form results in a system of partial differential equations
for the resolved scales that contains the turbulent stress tensort
5@t i j # that has to be modeled to close the equations. The center-
piece of the flow simulation methodology~FSM! is a contribution
function, f (D,L), that is employed for the modeling of@t i j #, t i j
5 f (D,L)Ri j whereD is representative of the local spatial step-
size of the computational grid andL is representative for the
smallest relevant spatial scale of the turbulent motion. Thus,D/L
is a measure of the local ‘‘physical’’ resolution, which is obtained
by comparing the local grid size to the locally smallest relevant
scale.Ri j is the Reynolds stress tensor. With the use of the con-
tribution functionf (D,L), the required degree of modeling of the
un- ~or under-! resolved subgrid scales can be determined in a
local and time-dependent manner, because even if a time-
independent, fixed computational grid is employed~which is usu-
ally the case!, the relevant smallest scales vary in space and time
as the computation progresses in time. Constraints on the design
of the contribution function are such that for a coarse local grid
(D/L large!, f (D,L)→1, all scales are modeled and, locally, a
RANS-type calculation is performed. In the other limit, i.e., for a
very fine grid (D/L small!, f (D,L)→0, when all scales can be
resolved, a DNS should be recovered. In between, depending on
the magnitude ofD/L, LES-type calculations are being performed
as then only the unresolved scales are being modeled, where the
degree of~local! modeling is determined directly byf (D,L). For
modeling Ri j , in principle, any turbulence model may be em-
ployed. However, in order to enable a consistent approach to the
RANS limit ( f (D,L)→1), it is obvious that state-of-the-art
RANS turbulence models should be used. For our FSM develop-
ment so far, we have mainly used the explicit algebraic stress
model ~ASM! by Gatski and Speziale@8#.

For our initial development of the FSM we have mainly em-
ployed f (D,L) in the form

f ~D,L !5@12exp~bD/L !#n (1.1)

whereb and n are calibration constants~so far n51 was used!
@5,6#. Thus, this contribution function allows for a consistent local
approach to RANS whenD/L is large, and to DNS whenD/L
becomes small. In between, depending onD/L, a more or less
resolved ‘‘untraditional’’ LES is performed. ‘‘Untraditional,’’ be-
cause a state-of-the-art turbulence model is used for modeling
unresolved scales and because the required model contribution is
based on a physical local~and time instantaneous! resolution
which is determined during the actual computation and does not
require a test filter as in conventional dynamic subgrid scale
~DSGS! models.

For L, in principle any relevant length scale can be used as long
as it represents the smallest relevant scales and can be used to
determine the local ‘‘physical’’ resolution~local grid size divided
by smallest relevant scale!. As the form of f (D,L) was obtained
from empirical considerations, it is obvious that other forms may
be found that are better suited for given applications, or may be
more universally applicable. In other words, it would be desirable
to find a contribution function that would allow meaningful simu-
lations with an even coarser resolution than is possible with the
form given in Eq. ~1.1!. Thus, in summary, it is important to
emphasize that, for FSM, a particular form of the contribution
function, a specific turbulence model, or a specific length scale
used for determining the physical resolution, are not the funda-
mental aspects. Rather, it is the strategy, the approach, by which
instantaneous, local, relevant length scales in the flow are used to
determine the ‘‘physical resolution’’~by comparing the relevant
length scale to the local grid size! and using the local resolution
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for determining the degree of modeling required to properly rep-
resent the unresolved subgrid scales. Application of the FSM ap-
proach to a variety of flow problems will invariably lead to im-
proved, more versatile forms of the contribution function than that
of Eq. ~1.1!. Towards this end, we have experimented with other
forms of f (D,L) which, for example, use other length scales, such
as an integral length scale@9#. A strategy similar to our FSM has
also been tested by Batten et al.@10#.

As FSM, the hybrid approach by Cabot@11,12# and the de-
tached eddy simulation~DES! approach by Spalart@13# were also
motivated by the realization that traditional LES was computa-
tionally too expensive for practical applications. To overcome the
high-resolution requirement of the traditional LES, in these hybrid
approaches, a two-layer model is used, where in the wall region,
RANS-type calculations are performed and then at a specified
distance from the wall, the computation switches to LES. Thus, in
contrast to FSM, where the ‘‘transition’’ from RANS to LES~and
DNS! is smooth, in these approaches, the transition is abrupt. As
demonstrated by Squires et al.@14#, DES can work quite effec-
tively for so-called ‘‘natural’’ applications where the flow field is
dominated by large, energetic~‘‘detached’’! structures. It does not
and cannot work as well for wall bounded flows, because the
arbitrary and sharp transition between the near wall RANS type
model to LES will cause unphysical effects.

Numerical Method

Governing Equations. The governing equations considered
in this paper are the incompressible, unsteady Navier-Stokes equa-
tions in vorticity-velocity formulation. However, it should be
noted that the FSM approach is not limited to any particular for-
mulation. After averaging the Navier-Stokes equations and subse-
quently applying the curl operator, three transport equations for
the averaged vorticity components are obtained,

]v̄

]t
1¹3~v̄3ū2¹•t!5

1

Re
¹2v̄. (1.2)

The velocity vectorū is computed from a set of Poisson equa-
tions, which are obtained form the definition of vorticity and the
continuity equation~see Meitz and Fasel@15# for details!. How-
ever, it should be pointed out that FSM is not at all tied to a
particular form of the Navier-Stokes equations. Using FSM, the
turbulent stress tensor,t, is modeled by the product of a contri-
bution function such as given in Eq.~1.1! and the Reynolds stress

t5 f ~D,L !R. (1.3)

Turbulence Models. For modeling the Reynolds stresses in
Eq. ~1.3!, in principle, any state-of-the-art turbulence model can
be employed. So far, in our development of FSM, we have mainly
used the explicit algebraic stress model~ASM! developed by
Gatski and Speziale@8#. In this model, the Reynolds stress tensor
is modeled as
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where the strain rate tensor and the vorticity tensor are given by

Si j 5
1

2 S ]ui

]xj
1

]uj

]xi
D , Wi j 5

1

2 S ]ui

]xj
2

]uj

]xi
D (1.5)

and
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with the invariants for the strain rate tensor and the vorticity ten-
sor
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The quantitiesk5(1/2)ui8ui8 and«51/Re(]ui8/]xj)
2 are the turbu-

lent kinetic energy and dissipation rate, respectively, which are
governed by the following transport equations:
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where n t5Cmk2/« is the eddy viscosity and the constants are
given by Speziale@6# as C«1

51.44, C«2
51.83, sk51.0, C«

51.3, Cm50.09, anda150.227, a250.0423,a350.0396. The
near-wall damping function in the« transport equation isf «2

51

2exp(20.1 Reyk1/2).

Numerical Scheme. A detailed description of the numerical
scheme used in this study for solving the governing equations is
given by Meitz and Fasel@15#. Some key points of the numerical
method can be summarized as follows:~i! The streamwise and
wall-normal derivatives are approximated by compact differences
of fourth-order accuracy;~ii ! variable grid, allowing for clustering
of grid points near the wall;~iii ! for three-dimensional simula-
tions, the flow is assumed to be periodic in the spanwise direction,
therefore, this direction is treated pseudo-spectrally;~iv! a fourth-
order Runge-Kutta scheme is used for the time integration;~v! a
fast Poisson solver is implemented for solving the velocity equa-
tions; and~vi! at the outflow boundary a buffer domain technique
is implemented to avoid reflections of disturbance waves and vor-
tical structures.

Equations~1.6! are solved using a second-order accurate differ-
ence scheme in both thex- andy-directions and an ADI method is
utilized to advance in time. It should be noted that the lower
formal accuracy of the scheme is used on purpose for the solution
of Eqs. ~1.6!. This does not reduce the overall order of the nu-
merical scheme of the Navier-Stokes equations, because only the
subgrid scale stresses are integrated to a lower order which stabi-
lizes the computation of Eq.~1.6!.

Boundary Conditions. For the examples discussed below,
the boundary conditions are given as follows: At the inflow, Di-
richlet conditions are imposed for the vorticity, the velocity com-
ponents, the turbulent kinetic energy, and the turbulent dissipation
rate ~if the inflow is turbulent!. At the wall (y50), no-slip, no-
penetration conditions are imposed on the velocity components.
For the turbulent quantities, a Dirichlet condition is used for the
turbulent kinetic energyk50, while a Neumann condition is used
for «.

At the freestream boundary (y5ymax), the flow is assumed to
be irrotational and laminar. At the outflow (x5xmax) the second
derivatives with respect tox of all variables are set to zero.

Disturbances are introduced into the flow in two ways:~i! a
blowing and suction slot near the inflow boundary;~ii ! a volume
forcing technique, also applied near the inflow. Both disturbance
generation techniques are designed to introduce predominantly
vortical disturbances into the flow.

Examples

Flat-Plate Boundary Layer. As a first example for an FSM
application, results for a flat-plate boundary layer without pressure
gradient are presented~see Bachman@16#!. This case has been
chosen for testing FSM because of the abundance of available
data for comparison, both experimental measurements and com-
putations. The inflow of the computational domain is located at
x50.3 m from the plate leading edge and the freestream boundary
is at y50.0627 m. The number of grid points and Fourier modes
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used for the four different cases presented here are summarized in
Table 1. For case B1, the resulting dimensional step-size in the
x-direction isdx55.8331024 m and in thez-directiondz52.92
31024 m, which yieldsdx1526 and dz1513 at Reu'1400.
The contribution function employed for these calculations is
f (D,L)512exp(20.004D/L) where D5(dxdydz)1/3 is the
mean local step-size andL5Lk5Re23/4 «21/4.

Figure 1 shows the mean streamwise velocity profile in wall
coordinates at a location Reu'1400. The data of cases B1–B3 are
virtually identical and also match both the theoretical curves for
the viscous sublayer and the logarithmic layer as well as data by
Murlis @17# and Spalart@18#. Case B4, however, shows a signifi-
cant deviation from these data, indicating that for this very coarse
resolution, the contribution of the turbulence model is too small.
In fact, the resolution in this case is far too coarse~only five
modes in the spanwise direction! to allow for a meaningful un-
steady simulation. However, we are investigating more general
forms of the contribution function that would allow simulations
with such an extremely coarse resolution. The spanwise average
of the contribution functionf (D,L) as a function of wall normal
distance is plotted in Fig. 2. As designed, the model contribution
increases for reduced streamwise and spanwise resolution. More
importantly, the increase in step-size has a more pronounced ef-
fect in the inner region of the boundary layer (y1,80), consis-
tent with the reduction in size of the turbulent structures near the
wall.

In Fig. 3, instantaneous contours of spanwise vorticity for cases
B1 ~top! through B4~bottom! are shown in anx-y plane. The

figure clearly demonstrates how the decrease in resolution and the
concomitant increase in the contribution of the model remove the
smallest structures while the large, coherent motion remains
largely unchanged. For case B4, this figure again shows that the
resolution is too coarse, resulting in spurious oscillations and un-
physical structures in the flow. Spanwise vorticity is plotted again
in Fig. 4 in anx-z plane aty50. Note how the near wall struc-
tures are well resolved in both case B1 and case B2. In contrast,
the scale of the structures increases significantly for case B3, but
the simulation still yields surprisingly accurate results for the
mean velocity profile~see Fig. 1!.

Wall Jet. The wall jet is an ideal test case for turbulence
models because it combines elements of two important prototypi-
cal flows: a turbulent wall boundary layer and a free shear layer.
However, as was recognized early on~see Launder@19#!, captur-
ing the interaction between these two regions in the turbulent wall
jet is crucial in order to obtain numerical results that match ex-
perimental measurements.

Numerous experimental investigations of the mean flow have
been reported in the literature~see Launder@19#!. Although the
measurements agree well for the bulk of the wall jet, the data vary
considerably in the near wall region, especially for the skin fric-
tion. In part, this is due to the large discrepancy in length scales of
the inner boundary layer region and the outer shear layer region.
The velocity maximum is reached at a wall normal distance of
only 15% of the wall jet half-width, while the velocity decays to
zero at the outer edge of the shear layer region at a wall normal
distance of about three times the half-width. While most experi-
mental investigations of the turbulent wall jet focused on the mean
flow quantities, the work by Katz et al.@20# is a notable excep-
tion. They showed that large vortical structures with a strong
spanwise coherence exist in the turbulent wall jet and play an
important role. Although these structures are observed mainly in
the shear layer region, they profoundly change the entire velocity
profile, as indicated by the significant change in the mean skin
friction. This could be observed clearly in the experiments where
these structures were deliberately enhanced by periodically forc-
ing the flow.

Fig. 1 Streamwise velocity profiles in near-wall scaling—flat-
plate boundary layer

Fig. 2 Time-averaged contribution function profiles—flat-plate
boundary layer

Table 1 Computational parameters

Case B1 B2 B3 B4

Nx 1281 751 481 301
Ny 80 80 80 80
Kz 25 15 9 5
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The objective of the present numerical investigations was to
determine how well the FSM captures the dynamics of the large
coherent structures in the wall jet and their effect on the turbulent
mean flow.

Flow Simulation Methodology (FSM) in the Unsteady
Reynolds-Averaged Navier-Stokes (URANS) Limit.To assess the
quality of the algebraic stress model, FSM was used in the
URANS limit. In these calculations~c.f. Seidel and Fasel@21#!,
agreement similar to other RANS calculations was achieved be-
tween experimental mean flow data and the computational results.
However, due to the equilibrium turbulence models used in typical
RANS simulations, the nonequilibrium character of the turbulent
wall jet cannot be captured. This is most clearly seen in the fact
that the Reynolds shear stress is zero at the velocity maximum,
whereas in the experiments this wall normal distance is reduced
by about 30%.

Using FSM in the unsteady RANS limit, the effect of large
coherent motion on the mean flow profiles was studied. Although
FSM was developed to allow LES type calculations, it is particu-
larly important to evaluate the performance of the model in the
URANS limit to establish how well the underlying subgrid scale
model is able to predict the flow in the large Reynolds number/
coarse resolution limit. Within the FSM framework, this can be
accomplished by settingf (D,L)51.

To investigate the effect of the large, coherent motion, distur-
bances were introduced into the flow using the volume forcing
method described above. Forcing was introduced with a frequency
of F517 Hz. The amplitudes for the cases presented here are
shown in Table 2.

Figure 5 compares the mean flow profiles of case U1 and case
U2 with the profile of the unforced base flow at three streamwise
locations,x/b5100, 150, 200~b is the nozzle height!. The large-
amplitude forcing applied in case U2 leads to a significant mean
flow distortion. Note that this distortion increases in the stream-
wise direction, indicating a continuous momentum transfer from
the mean flow to the large, coherent structures. Also, the maxi-
mum velocity decreases and its location is shifted towards the
wall, whereas the wall jet half-width is largely unaffected.

The effect of the large, coherent motion on the Reynolds shear
stress distribution is shown in Fig. 6, whereR12 is plotted as a
function of wall normal distance. The large structures increase the
shear stress maximum and shift the location of zero shear stress
significantly towards the wall, which qualitatively agrees with ex-
perimental measurements. Figure 7 shows the computed Reynolds
shear stress~case U2! and experimental measurements by Eriks-
son et al.@22# in wall coordinates. When large coherent structures
are present in the calculations, the agreement between the experi-
mental and computational results is significantly improved. This

Fig. 3 Instantaneous contours of spanwise vorticity in the x -y plane—flat-plate boundary
layer
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result is very surprising in light of the fact that for these calcula-
tions only a single-frequency disturbance was introduced.

Despite this simplification, URANS evidently captures this im-
portant characteristic of the turbulent wall jet, which could not be
captured by a steady RANS calculation~‘‘base flow’’ in Figure 5!.
The large coherent structures apparently impact the turbulent
mean flow in a fundamentally different way~adding nonequilib-
rium effects! than the small scale turbulence. Hence, computing
the structures in the URANS provides a significant improvement

over combining their effect on the mean flow with that of the
small scale turbulence in the Reynolds stress, as done in the
steady RANS.

Flow Simulation Methodology.A case study is presented to
demonstrate the performance of FSM in its entire range of appli-
cability, from DNS with f (D,L)50 in the whole domain~case
F1!, to URANS with f (D,L)51 ~case F5!. Cases F2 through F5
use the DNS data as initial condition. The computational param-
eters for the five cases are summarized in Table 3~I is the number
of points in the streamwise direction,K is the number of Fourier
modes in the spanwise direction!.

For the simulations presented here, a modified form of the con-
tribution function suggested by Zhang et al.@23# was used
f (D,L)512exp(2max(0,5D210Lk)/NLk) with D51/3(Dx2

1Dy21Dz2)1/2. The form of this contribution function is a slight
variation from the one proposed originally. It allows for setting
the physical resolution in the DNS limit~here five step-sizes

Fig. 4 Instantaneous contours of streamwise vorticity in the x -z plane at the
wall—flat-plate boundary layer

Table 2 Disturbance amplitude „normalized by the jet exit
velocity …

Case U1 U2

f̂ /U j 131022 231022
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within 10Lk) and independently choosing a calibration parameter
N that determines how rapidlyf (D,L) approaches the URANS
limit as the physical resolution decreases.N is given in Table 3 for
the FSM computations presented.

In the DNS ~case F1!, a high momentum self-similar Glauert
wall jet (Re516,500 based on the jet half-width at the inflow! is
perturbed by volume forcing near the inflow. Only three-
dimensional perturbations are introduced close to the inflow. Fig-

Fig. 5 Effect of large-scale structures on the mean u -velocity profile—
URANS of turbulent wall jet

Fig. 6 Reynolds stress R12 from URANS of turbulent wall jet; ----- random
part „modeled …, " " " " coherent part, sum of coherent and random
parts

Table 3 Simulation-type, model parameters, and resolution

Case F1 F2 F3 F4 F5

Type DNS (f 50) LES LES LES URANS (f 51)
N - 2500 1000 1500 -
Dx @mm# .5 .5 1 1 1
Dz @mm# .25 .25 .5 .125 .5
I 801 801 401 401 401
K 21 21 11 5 11
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Fig. 7 Reynolds stress R12 from URANS of turbulent wall jet in wall coordi-
nates; ----- flow without structures, " " " " mean flow with structures, sd ex-
perimental data from Eriksson †22‡

Fig. 8 Direct numerical simulation of wall jet transition. Isolevels of span-
wise vorticity.

Fig. 9 Mean velocity profiles in wall coordinates
Fig. 10 Wall values of the contribution functions for Cases
F1–F5—turbulent wall jet
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ure 8 shows isolevels of instantaneous spanwise vorticity in per
spective view. Remarkably, the spanwise coherent structures
emerge naturally some distance downstream of the forcing loca-
tion, despite the lack of a two-dimensional forcing component.

The grid resolution used for case F1 is far too low to constitute

a well-resolved DNS calculation~which would be extremely ex-
pensive due to the discrepancy in scales between inner and outer
flow regions and due to the large spreading of the wall jet in
downstream direction!. Consequently, gridmesh oscillations are
present in case F1.

Fig. 11 Isolevels of instantaneous spanwise vorticity in an x -y plane „left … and on the wall „right …—turbulent wall jet
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Despite the coarse resolution, the turbulent wall jet computed
with the DNS is remarkably close to experimental measurements.
For example, in Fig. 9 streamwise mean velocity profiles from the
simulations~cases F1–F5! are compared with profiles from the
experiments by Eriksson et al.@22#. The profile from case F1 is
quite close to the experimental measurements, in particular it ex-
hibits a similar log-like behavior fromy1510 to y15100.

Cases F2–F4 are FSM calculations and therefore the modeling
contribution adjusts in a time and space-dependent manner. Figure
10 shows the streamwise development of the contribution function
at the wall for one time instant. Note that upstream ofx520 the
contribution function obtained by FSM is multiplied by a ramping
function to shut off the model during flow transition.

Case F2 has the same resolution as the DNS, and consequently,
the model contribution is very small, comparable to the subgrid
scale contribution in an LES~see Fig. 10!. The turbulence model
mainly acts to reduce gridmesh oscillations that are present in the
DNS ~case F1!. As a result, the mean flow profile for case F2 in
Fig. 9 matches the experimental data even better than for case F1.
The grid resolution for cases F3 and F4 is such that the small
scales have to be modeled, resulting in significant values for
f (D,L) ~Fig. 10!. Nevertheless, the velocity profiles computed
from these cases are still remarkably close to the experiments.

An impression of the resolved flow fields for all five cases is
provided with the contour plots of instantaneous spanwise vortic-
ity in Fig. 11. The plots in the left column show the spanwise
average of the spanwise vorticity versusx andy, the plots in the
right column display the spanwise vorticity in thex-z plane aty
50. For case F1~DNS!, the flow exhibits small-scale structures
embedded in the large scales in the entire computational domain.
The large coherent structures consist of a pair of counter rotating
vortices, one in the near wall boundary layer region, the other in
the shear layer region of the wall jet.

In case F2, the small scale fluctuations are reduced in strength
due to the effect of the subgrid model, yet the large-scale struc-
tures still correlate very well with the DNS data. Interestingly, the
structure atx545 is somewhat stronger than in the DNS compu-
tation and in the process of lifting off. This change in behavior can
be contributed to the effect of the turbulence model on the very
delicate balance of vortex pairs as they are generated and con-
vected downstream. The spatially varying model contribution~es-
pecially the wall normal distribution! changes this balance slightly
by modeling to a larger degree near the wall. It turns out that these
large coherent vortices are an extremely sensitive indicator of the
balance between modeled subgrid scale stresses and the resolved
scale motion. As cases F2 and F3 indicate, the contribution func-
tion is not optimal, but also not very far from optimal, since the
results obtained with a quarter of the resolution in anx-z plane
essentially match the results of the DNS~case F1!.

Case F5, using FSM in the limit of unsteady RANS, signifi-
cantly attenuates the evolving structures close to the disturbance
slot and eventually results in a steady flowfield in the turbulent
flow region downstream. It has to be stressed, however, that this
steady flowfield is still the result of a RANS computation with a
state-of-the-art algebraic stress model and therefore yields very
good mean flow results.

Conclusion
In this paper the fundamental aspects of the flow simulation

methodology~FSM! have been presented and discussed. The ex-
amples of applications of FSM for the present paper have been
chosen so that the basic features of the FSM approach could be
demonstrated. In particular, the wall jet was chosen because it
represents a ‘‘tough’’ application, as the turbulent flow physics
depend on the interaction between outer~large! coherent struc-
tures developing in the free shear layer and the near-wall bound-
ary layer. The results of the FSM calculations demonstrate that the
core module of FSM, the contribution function, is doing the job it
was designed to do, namely providing the proper amount of sub-

grid scale modeling based on the local, ‘‘physical’’ grid resolution.
Development of FSM is far from complete, although all essential
modules of FSM have been implemented and tested. Much more
experience has to be gathered by applying FSM to other flows.
However, the results presented here are very encouraging and
demonstrate the potential of FSM for calculating complex turbu-
lent flows.
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Multidimensional Diagnostics
of Turbine Cavitation1

A novel technique for vibro-acoustical diagnostics of turbine cavitation is introduced and
its use demonstrated on a Francis turbine. The technique enables identification of differ-
ent cavitation mechanisms functioning in a turbine and delivers detailed turbine cavita-
tion characteristics, for each of the mechanisms or for the total cavitation. The charac-
teristics specify the contribution of every critical turbine part to the cavitation intensity.
Typical diagnostic results: (1) enable optimization of turbine operation with respect to
cavitation erosion; (2) show how a turbine’s cavitation behavior can be improved; and (3)
form the basis for setting up a high-sensitivity, reliable cavitation monitoring system.
@DOI: 10.1115/1.1511162#

Introduction
In a long list of recent publications on the methods of vibro-

acoustical diagnostics of hydro turbine cavitation~@1–20#!, little
can be found regarding the problem of identifying turbine parts
that cause cavitation. This seems to be the consequence of the fact
that most measurements have been performed withone sensor
using mean valuesof vibro-acoustical signatures. While such
measurements can possibly yield an overall description of cavita-
tion performance of a turbine, they can hardly furnish any details
as to the cause of cavitation. In order to distinguish between dif-
ferent cavitating elements of a turbine, spatial resolution is
needed. Because the space-time configuration of the acoustical
field in a turbine is unsuitable for coherent acoustical measure-
ments that might result in directivity or focusing on a source, one
has to try incoherent processing based on parametric differences
produced by the inhomogeneity of a transfer function or source
structure. In one such approach, introduced in Bajic@9# and elabo-
rated in Bajic @16#, one analyzes the dependence of cavitation
noise power on the instantaneous angular position of a turbine
runner. In case of weak or moderate cavitation this yields data that
enable estimation of contributions of various pairs of stator/runner
blades to the total cavitation intensity. Fundamentally, this method
is based on using anadditional dimensionof data which usually
has been ignored and omitted by circumferential averaging. An-
other case in which one distinguishes between spatially separated
segments of a cavitating flow and identifies contributions arising
from different runner blades has been reported in Hermann et al.
@18#. However, the method is not described by the reference.

In this paper an approach to vibro-acoustical diagnostics of tur-
bine cavitation is presented that systematically uses themultidi-
mensionalityof vibro-acoustical signatures of cavitation in order
to infer details of cavitation in a turbine. A number of spatially
separated sensors are utilized to pick up differences in the depen-
dence of cavitation on the runner’s angular position, and these
data are studied as a function of noise frequency and turbine
power. By using the resolution in a combination of dimensions—
sensors’ location, noise frequency, runner’s instantaneous angular
position, turbine power—it is possible to distinguish between dif-
ferent cavitation mechanisms and their causes~i.e., different tur-
bine parts that cause cavitation!, and to quantify their respective
contributions to cavitation intensity. As concluded in a critique of
the present practice of the vibro-acoustical cavitation diagnostics

~Bajic @20#! such an approach has to be truly multidimensional
and not a simple series of analyses in which only one independent
element is varied in each step.

Experiment
The multidimensional measurement and analysis procedure was

verified by means of the data collected on a 17 MW, double-
runner, horizontal-axis Francis turbine in which 19 runner blades
are rotating behind 20 guide vanes. On the shaft of each guide
vane a high-frequency vibro-acoustical sensor was fixed~Fig. 1!.
The instantaneous angular position of the runner, described by the
angle u ~increasing in the direction of rotation and being zero
when the reference blade is in the reference position!, was con-
trolled. 100 signal samples, each covering one revolution period,
were recorded at each sensor and in every operating condition of
the turbine. The signal recording was synchronized with runner
rotation, and the 100 samples were used to produce deterministic
descriptors of random cavitation noise signals by averaging over
100 revolutions. The frequency range from the revolution fre-
quency up to 1 MHz was covered. More than 40 gigabytes of
vibro-acoustical data were collected and analyzed. The steps of
the analysis are presented in what follows.

Experimental Data
The power density spectra of noise recorded by means of the

sensor at the guide vanev51 are illustrated in Fig. 2. The spectra
measured at the other guide vanes were similar. In a broad fre-
quency range between 0.2 kHz and 1 MHz there is a noticeable

1Presented at the Hydraulic Machinery and Systems—20th IAHR Symposium,
Aug. 6–9, 2000, Charlotte, NC.

Contributed by the Fluids Engineering Division for publication in the JOURNAL
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
December 1, 2000; revised manuscript received May 6, 2002. Associate Editor: Y.
Tsujimoto.

Fig. 1 The sensors placed on the 20 guide vanes react to cavi-
tation in various locations around the spiral
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dependence on turbine power. Narrow peaks at frequencies above
10 kHz are due to sensor resonances and vibro-acoustic reso-
nances of the turbine.

In another format, as normalized spectra~Bajic and Keller@6#!
the data from Fig. 2 are shown in Fig. 3. Most resonance peaks,
other traces of transfer functions, and the BPF-harmonics disap-

pear. Free from these cavitation-irrelevant issues, such spectra il-
luminate the influence of turbine load on cavitation in a more
objective way. They also may reveal cavitation details hardly vis-
ible in nonnormalized spectra.

The dependence of noise intensity on the angular position of the
runner found in the measurements is illustrated by the polar dia-
grams in Fig. 4. These were obtained by means of the sensor at
v51. Similar, but not identical, patterns were recorded at the
other guide vanes.

Identification of Cavitation Mechanisms
A two-dimensional representation of thev51 normalized spec-

tra presented in Fig. 5 yields both detailed and overall insight into
the structure of data in the~f, P!-domain. Although the informa-
tion content of the data in Fig. 3 and Fig. 5 is identical, much
more can be inferred from Fig. 5. First of all, two dominant pat-
terns can be recognized in the body presented by the two views in
Fig. 5. These are drawn in Figs. 6~a! and 6~b! and are interpreted
as the vibro-acoustical signatures of two segments of cavitating
flow, i.e., cavitation mechanisms. With reference to strongly dif-
fering spectra, these mechanisms may be assumed hydraulically
independent and thus their respective noise power components
additive. After subtracting the two components from the total
spectrum of Fig. 5, the third mechanism, presented in Fig. 6~c!, is
identified. In this way a useful decomposition of the total spec-
trum follows:

gv~ f ,P,Po!5 (
m50

M

~m!gv~g,P,Po!,

M53, v51. Here a possibly existing background component,
(0)gv( f ,P,Po), is included to enable the most general description.
In the presentv51 case such a component was not necessary.

Estimates of cavitation intensity based on noise power mea-
sured within a limited frequency band are highly biased due to
strong differences in the forms of the spectra of the three mecha-
nisms. In order to suppress this error, the total noise power,I v(P),
should be used as an estimate of cavitation intensity and not an
arbitrary part of it~Bajic @16#!. This also holds true for the esti-
mates of the cavitation intensity of cavitation mechanisms,
(m)I v(P). These follow from the normalized spectra,
(m)gv( f ,P,Po), identified by the empirical procedure illustrated
above:

~m!Gv~ f ,P!5 ~m!gv~ f ,P,Po!3Gv~ f ,Po!,

~m!I v~P!5E
0

`
~m!Gv~ f ,P!d f ,

and thus

Fig. 2 Typical power density spectra of noise picked up at
different power values. There is no noticeable line at the revo-
lution frequency, but the blade-passage frequency „BPF… lines
are rather strong. The background noise, recorded in the tur-
bine at rest while the other machinery in the plant was operat-
ing, is low enough to enable reliable estimation of the continu-
ous spectrum component between 0.3 and 800 kHz.

Fig. 3 Overview of the normalized power spectra. The vÄ1
power density spectra recorded at different turbine power val-
ues are compared to the one recorded at 13.3 MW. The spec-
trum related to this reference value is thus represented by the
zero-dB line.

Fig. 4 An example of modulation curves: M1„u,f ,P… in an octave band centered at f
Ä125 kHz measured at different turbine power values
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I v~P!5 (
m50

M

~m!I v~P!.

This last form of the cavitation description, in which there is no
longer frequency dependence, will be used as a final cavitation
intensity estimate. As to the turbine-power dependence of the rela-
tive intensities of the mechanisms, it will be assumed that its form
stays the same for all the frequency components contributing to a
particular mechanism. Consequently, the dependence found within
a narrow frequency range that is typical for the mechanism~Fig.
7! will be used:

m51: octave band centered atf 531.5 kHz, 0,P (MW) ,7;
m52: octave band centered atf 5125 kHz, 7,P (MW) ,14;
m53: octave band centered atf 5125 kHz, 14,P (MW).

Cavitation Intensity Estimates
A weak point in the previous discussion derives from the fact

that everything in it is based on the results obtained on only one
guide vane,v51. While such results may rather safely be used to
identify the (f ,P)m ranges and to optimize the analysis, no quan-
titative estimates of cavitation intensity may be derived from
them. Indeed, as stated in Bajic@20#, spatial averaging is neces-

Fig. 5 Normalized spectra of Fig. 3 „PoÄ13.3 MW… presented two dimensionally, seen from two perspec-
tives

Fig. 6 Noise decomposition: contribution of the three cavitation mechanisms to the total noise
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sary to derive stable estimates of cavitation intensity which would
be representative of all the segments of a cavitating flow. Thus,
instead ofI v(P) and(m)I v(P), the estimates

I ~P!5^I v~P!&v and ~m!I ~P!5^~m!I v~P!&v

should be used. One more calibration step is needed in order to
produce a stable and representative estimate of the total cavitation
intensity,C(P). The data related to the chosen frequency bands
that are found suitable for the estimation of the mechanisms
should be combined into the estimates of the mechanisms’ inten-
sities. This can be done by making the contribution to the cavita-
tion intensity of the mechanismm, (m)C(P), stemming from the
vanev, proportional to the quantity

Gv~ f ,P!

G1~ f ,P!
3 ~m!I 1~P!, ~ f ,P!P~ f ,P!m,

where stable-in-f low-resolution spectra should be used. Such
data, which are based on the total noise power but incorporate the
dependence on turbine power as it is described by the spectra
determined within the~f, P! ranges specific for the mechanism
considered, are then averaged over all thev ’s to yield the final
estimates of the mechanisms’ intensity. Considered within their
respective~f, P! ranges and summed, these estimates then yield
the final estimate of the total cavitation intensity. Additionally, this
final estimate—which is not more than a relative estimate of cavi-
tation intensity—is normalized relative to its maximum.

Role of Guide Vanes and Runner Blades
The 19 equidistant peaks in the modulation curves of Fig. 4,

noticeable at most power values but strongest between 9.9 and
14.3 MW, are due to interaction of one guide vane~in this case
v51) and the 19 runner blades. Such modulation curves obtained
at all the guide vanes, in the same frequency band as in Fig. 4 at
a power value lying within (f ,P)2 , are presented in Fig. 8~b!.
This strong BPF-modulation is found to be characteristic of
mechanism 2. As to mechanism 1, the modulation in its~f, P!
range, illustrated by the 1.9 MW curve in Fig. 8~a!, is undetect-
able. The small fluctuations observable there are due to random
errors. The situations like these in Figs. 8~a! and 8~b! were found
within the whole (f ,P)1 and (f ,P)2 ranges. Therefore, as to the
mechanisms 1 and 2, the noise produced by mechanism 1 does not

depend on the angular position of the runner, and there is a series
of 19 peaks for every guide vane in the modulation curves of
noise produced by mechanism 2.

An interesting regularity can be noted in the set of 19320
peaks related to mechanism 2. There is a systematic shift of the
peaks related to the same runner blade as detected by the subse-
quent guide vanes. This is illustrated in Fig. 8~c! by the model
which was derived by manipulating the amplitudes of the peaks of
Fig. 8~b! while leaving their positions unchanged. As an example,
two series of peaks are denoted here, the ones due to the interac-
tion of runner blades 1 and 5 with the 20 guide vanes. Obviously,
the regularity found in the modulation waveforms can be used to
identify the contribution of each runner blade to the noise mea-
sured at every guide vane. Here the assumption has to be intro-
duced that a distinct maximum related to a particularb/v-pair
stems from cavitation in the vicinity of the guide vanev and thus
can be used as a measure of its cavitation activity. Such a heuristic
assumption is supported by the form of the peaks and the fact that
they do not overlap~cf. Figs. 4 and 8~b!!.

A filtering procedure based on the regularity of the described
M v(u, f ,P) structure has been devised and applied to the modu-
lation data. Allowing for a small random spread of angular posi-
tions of the peaks, the peaks’ maxima were estimated. These were
attributed to the relatedv ’s and b’s and denoted byM v

b( f ,P).
Such data were then classified with respect to thef andP values,
so that the estimates,(m)M v

b(P), of the component generated by
the mechanisms were derived. These were defined by

~m!M v
b~P!5M v

b~ f ,P!u~ f ,P!P~ f ,P!m

because there were no significant variations ofM v
b( f ,P) within

( f ,P)m . An alternative for the opposite case reads

Fig. 7 The way used to determine the range of prevalence of a
mechanism m, „f ,P…m , in the total noise is illustrated here by
the mÄ2 case. At the P-values between the pairs of curves the
mÄ2 intensity is equal resp. 2, 5, or 10 times stronger than the
rest of the intensity. There from the „f ,P…2 denoted; the ratio 5
is assumed sufficiently high.

Fig. 8 Typical cases of noise modulation
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Fig. 9 The fine-structure cavitation characteristics of the turbine: the most detailed description of cavitation
that can be obtained by the multidimensional method. For each tested turbine-power value, P, there are 380
„number-of-runner-blades Ãnumber-of-guide-vanes … dimensionless values, Cv

b , that stand for the intensity of
cavitation caused by the interaction of a pair consisting of the runner blade b , and the guide vane v . The
Cv

b-values specify the relative intensity of cavitation. Their use in cavitation erosion estimation is discussed
elsewhere „Bajic †14,17‡…. The data presented in the figure describe total cavitation. The method also enables
identification of different segments of a cavitating flow—cavitation mechanisms—and yields data like this for
each of them.
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~m!M v
b~P!5^M v

b~ f ,P!u~ f ,P!P~ f ,P!m
& f .

Note that there are only four variables in these estimates:m, v, b,
andP; noise frequency has disappeared.

In order to transform these results of modulation analysis into
the estimates of true intensities like those presented in Fig. 9, the
quantities

~m!I v
b~P!5 ~m!I v~P!F ~m!M v

b~P!Y (
b851

B

~m!M v
b8~P!G

were computed and used in the following formulas:

~m!Cv
b~P!5k ~m!I v

b~P!, Cv
b~P!5 (

m51

M

~m!Cv
b~P!,

~m!Cb~P!5(
v51

V

~m!Cv
b~P!, Cb~P!5(

v51

V

Cv
b~P!,

~m!Cv~P!5(
b51

B

~m!Cv
b~P!, Cv~P!5(

b51

B

Cv
b~P!,

~m!C~P!5(
b51

B

(
v51

V

~m!Cv
b~P!, C~P!5(

b51

B

(
v51

V

Cv
b~P!;

by means of the calibration constant

k5Fmax
P

(
m51

M

(
b51

B

(
v51

V

~m!I v
b~P!G21

.

C(P) was scaled to a maximum value of 1.

Turbine Cavitation Characteristics
TheC-functions of turbine power,P, introduced above, are tur-

bine cavitation characteristics. Four of them deal with all the cavi-
tation mechanisms at once and differ only in the degree and type
of resolution with respect to turbine parts—guide vanes,v, and

runner blades,b:
Cv

b(P) fine-structure characteristic,
Cb(P) runner characteristic,
Cv(P) wicket gate characteristic, and
C(P) global turbine characteristic.
The other four ~sets of! characteristics,(m)Cv

b(P), (m)Cb(P),
(m)Cv(P), and(m)C(P), yield the same description of cavitation
as above but separately for every one ofM mechanisms,m
51, . . .M . Some of the characteristics derived for the turbine
considered are illustrated in Figs. 9–12.

Conclusion
Vibro-acoustical diagnostics of turbine cavitation based on a

number of suitably located sensors and multidimensional data pro-
cessing, proposed and verified here, utilizes an exhaustive set of
measurement data to reconstruct a virtual vibro-acoustic picture of
cavitation, which enables iterative adaptive analyses and thus re-
veals details that otherwise may remain undetected. Such multidi-Fig. 10 Runner and wicket gate cavitation characteristics

Fig. 11 Global turbine characteristics without and with resolu-
tion with respect to cavitation mechanisms

Fig. 12 Check of „in …stationarity: variation of cavitation inten-
sity at the „f ,P…-values characteristic of the mechanisms
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mensional diagnostics enables identification of different cavitation
mechanisms functioning in a turbine, proves to be a highly sensi-
tive tool for reliable estimation of turbine cavitation characteris-
tics, and yields detailed quantitative descriptions of the role criti-
cal turbine parts play in the cavitation process. It removes several
disadvantages encountered in practice with simpler approaches.

Typical diagnostic results enable optimizing a turbine’s opera-
tion with respect to cavitation erosion and improving a turbine’s
cavitation behavior if necessary. The results may also be used to
set up a high-sensitivity, reliable, application-specific cavitation
monitoring system.
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Nomenclature

b 5 runner blade
B 5 number of runner blades,B519

BPF 5 blade-passage frequency,B fo
C(P) 5 total cavitation intensity

Cv(P) 5 intensity of the cavitation component due to
action of guide vanev

Cb(P) 5 intensity of the cavitation component due to
action of runner bladeb

Cv
b(P) 5 intensity of the cavitation component due to

action of the (v,b)-pair
(m)C(P) 5 intensity of cavitation mechanismm

(m)Cv(P) 5 intensity of the component of cavitation
mechanismm due to action of guide vanev

(m)Cb(P) 5 intensity of the component of cavitation
mechanismm due to action of runner bladeb

(m)Cv
b(P) 5 intensity of the component of cavitation

mechanismm due to action of the (v,b)-pair
Dv( f ,P) 5 ^@M v(u, f ,P)21#2&u1/2

5 modulation depth
f 5 noise frequency

f o 5 revolution frequency,f o5500 min21

( f ,P)m 5 part of the~f, P!-domain within which
mechanismm is domineering

Go 5 reference power-spectrum value
gv( f ,P,Po) 5 Gv( f ,P)/Gv( f ,Po)

5 normalized power spectrum
Gv( f ,P) 5 power spectrum density of noise sensed at

guide vanev ~various resolutions!
(m)gv( f ,P,Po) 5 component ofgv( f ,P,Po) generated by

mechanismm
(m)Gv( f ,P) 5 component ofGv( f ,P) generated by mecha-

nism m
I o 5 reference noise-power value

I (P) 5 total noise power
I v(P) 5 total noise power as sensed onv

(m)I (P) 5 power of noise component generated by
mechanismm

(m)I v(P) 5 power of noise component generated by
mechanismm as sensed onv

(m)I v
b(P) 5 power of noise component generated by

mechanismm due to action of the (v,b)-pair
k 5 calibration constant

m 5 cavitation mechanism (1,2, . . . M ); m50
background

M 5 number of cavitation mechanisms detected in
the turbine

M v(u, f ,P) 5 amplitude modulation of noise power sensed
at v at powerP within a chosen frequency
band centered atf, expressed as a function of
u; ^M v(u, f ,P)&051

M v
b( f ,P) 5 peak value~in u! of the component of

M v(u, f ,P) related to the (v,b)-pair
(m)M v

b(P) 5 component ofM v
b( f ,P) related to mechanism

m
P 5 turbine power

Po 5 reference turbine-power value
PND 5 power net disturbance

v 5 guide vane~1, 2, 3, . . . inFig. 1!
V 5 number of guide vanes,V'20
u 5 instantaneous angular position of the runner

^& f 5 averaging overf within a denoted band
^&v 5 averaging overv51,2, . . .V
^&u 5 averaging overuP @0,2p#
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Turbulence and Phase
Distribution in Bubbly Pipe Flow
Under Microgravity Condition
The role of the turbulence in the void fraction distribution in bubbly pipe flow under
microgravity condition is evaluated on the basis of numerical simulations using a
Eulerian-Eulerian two-fluid model. In microgravity, the average relative velocity is weak
and the void fraction distribution is mainly governed by the turbulence. The simulations
show that the turbulent contributions of the added mass force play an important role in
the phase distribution phenomenon. It is clearly proved that the turbulence acts on the
bubbles distribution not only by the pressure term but also by the turbulent correlations
obtained by averaging the added mass force.@DOI: 10.1115/1.1514212#

1 Introduction

In spite of the progress achieved in the bubbly flow modeling,
@1–3#, some important difficulties subsist; in particular the ability
to predict the phase distribution remains limited by the inadequate
modeling of the turbulence and of the interfacial forces. Lance
and Lopez de Bertodano@4# pointed out, in a remarkable review
on the phase distribution phenomena in bubbly two-phase flows, a
number of points that are not well considered in the interfacial
momentum transfer modeling. Among other effects they have
evoked those of the bubble size and of the turbulence.

In bubbly pipe flow, the radial bubble distribution is classically
attributed to two main effects. The first one is the lift force due to
the slip velocity of the bubble and the vorticity of the liquid flow,
@5#. The second one, pointed out by Drew and Lahey@6#, is the
transversal pressure effect due to the gradient of the turbulence in
the radial direction. Since this last work, the development of ac-
curate multidimensional turbulence models has been presented as
a requirement for suitable predetermination of two-phase bubbly
flows and many experiments have been carried out during the last
decades in order to study the turbulence structure in two-phase
bubbly flows,@7–11#.

In a previous study, Chahed et al.@12# have pointed out the
important effect of the turbulent contributions in the modeling of
the interfacial momentum transfer: particularly the turbulent cor-
relations generated by the added mass force play an important role
in the prediction of the void fraction in a bubbly wake behind a
splitter plate. These results were carried out using an Eulerian-
Eulerian two-fluid model developed for bubbly flows,@13,14#.

In the present paper, the two-fluid model is used to simulate a
bubbly pipe flow under microgravity condition. The numerical
results are compared to the experimental data of Kamp et al.@15#
and the prediction of the void fraction distribution is interpreted
according to the role played by the turbulence in the interfacial
momentum transfer. Indeed, the experiments of bubbly flows un-
der microgravity condition provide remarkable data that allow to
evaluate the specific role of the turbulence in the momentum in-
terfacial exchange: in microgravity, the buoyancy and the interfa-
cial forces associated with the mean relative velocity~drag and lift
forces! are close to zero and the interfacial momentum transfer is
quite exclusively determined by the turbulence effects.

2 Eulerian-Eulerian Two-Fluid Modeling
Eulerian two-fluid models are based on a classical averaging of

the balance equations that express in each phase the mass and the
momentum conservation. For each variableck(x,t) defined in the
phasek, the mean and fluctuating fields ofck(x,t) are defined,
respectively, byakck

%5^xkck(x,t)& and ck8(x,t)5ck(x,t)2ck
%

wherexk is the characteristic function of the phasek (xk51 in
the phasek and 0 everywhere else!, ak is the presence rate of the
phasek (ak5^xk&) and^ & is an averaging operator that satisfies
the Reynolds rules. For steady incompressible bubbly flows (rk
5const), without mass transfer, the averaged balance equations of
mass and momentum for the liquid phase~subscriptL) and for the
gas phase~subscriptG) are,@13#,

¹•~12a!uL%50 and ¹•auG%50 (1)

~12a!rL

D

Dt
uL%52¹pL%2¹•~~12a!rLuL8uL8

% !1~1

2a!rLg with
D

Dt
5

]

]t
1~uL% •¹! (2)

052a¹pL%1MG (3)

whereuL% and uG% are the average velocities, respectively, in the
liquid and in the gas phases,p% L is the average pressure in the
liquid, a5^xG& is the void fraction, andg is the gravity accelera-
tion.

In Eq. ~2!, the interfacial momentum transferMG has been
expressed versus the pressure gradient using Eq.~3!. The accel-
eration and the weight of the gas are neglected in comparison with
the force exerted by the liquid on the bubbles; so, Eq.~3! indicates
that the total force exerted on the bubbles is zero. This force
contains the nonperturbed flow action~pressure term or Tchen
force! and the interfacial termMG5^xGfp

(1)& where fp
(1) is the

density of the force due to the perturbed flow action. The expres-
sion of this force density is

fp
(1)5

1

qB
E E

]qB

sL
(1)
•ndS5¹•sL

~1!
(qB)

(4)

wheresL
(1) designates the stress tensor due to the perturbed flow,

qB and]qB are the volume and the boundary of the bubble and
2(qB) is a volume-averaging operator applied on the volume of the
bubble. A classical formulation forfp

(1) is adopted in function of
the drag, lift and added mass forces:
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f Pi
(1)52
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4
r
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d
uuG2uL

(0)u~uG2uL
(0)!2CArS d̃

d̃t
uG2

D̃

D̃t
uL

(0)D
22rCLv (0)3~uG2uL

(0)! (5)

with the material derivativesD̃/Dt 5 ]/]t 1uL•¹ and d̃/dt
5 ]/]t 1uG•¹. In this expression the velocityuL

(0) and the vor-
ticity vL

(0) are those of the nonperturbed flow,d is the bubble
diameter, and (CD , CL , CA), are, respectively, the drag, lift, and
added mass coefficients. The formulation of the momentum inter-
facial exchange set many questions especially concerning the av-
eraging of the fluctuating terms issued from the drag, added mass,
and lift forces. The common method consists of only keeping the
mean contributions of the interfacial momentum transfer while the
turbulent contributions are ignored,@2#, or eventually expressed
via a supplementary dispersion term proportional to the void frac-
tion gradient,@3,4#. In consideration of the insufficiency of these
formulations, Chahed et al.@12# proposed to include the turbulent
correlations issued from the added mass force. We consider that
the correlation between the fluctuation of velocity and that of the
vorticity is relatively weak and we admit that it is possible to
adopt a suitable formulation of the drag coefficient that takes into
account the effect of the turbulence. Under these conditions, the
turbulent contributions of the lift and the drag forces that remain
in the average momentum transfer expression are related to the
correlation between the velocity fluctuation of the nonperturbed
flow and the instantaneous phase distribution. Thus the average
interfacial momentum transfer taken in this model is written

MG52
3

4
arL

CD

d
uuR% uuR%22arLCLvL%3uR%

2arLCAS d

dt
uG% 2

D

Dt
uL% D2rLCA¹•a~uG8 uG8

%
2uL8uL8
% !

(6)

whered/dt 5 ]/]t 1(uG% •¹) anduR% is the relative velocity given
by

auR%5^xG~uG2uL!&5a~uG%2uL% !2^xGuL8&. (7)

It should be observed that in the formulation of the average inter-
facial momentum transfer, the nonperturbed flow is identified to
the continuous phase flow. The average interfacial momentum
transfer~Eq. ~6!! includes the contribution of the mean flow in the
drag, lift and added mass forces as well as the contribution of the
turbulence generated by the added mass force. The last term in Eq.
~7! represents a correlation between the continuous phase velocity
fluctuation and the instantaneous phase distribution. It can be in-
terpreted as a drift velocity associated with a dispersion effect due
to bubbles transport by the turbulent fluid motion,@1#.

According to the formulation of the interfacial term, the two-
fluid model we propose is basically adapted to dilute dispersed
gas-liquid flows with small spherical bubbles. In fact this formu-
lation supposes that the bubble diameter is relatively small in
comparison with the turbulent scales in the liquid. Besides, the
expression of the instantaneous force exerted by the continuous
phase on the bubble is only valid for bubbles with low deforma-
tion and weak hydrodynamic interactions~low void fraction!.

3 Closure of the Turbulence
The two-fluid model presented above requires closure of the

turbulent stress tensors in the liquid and in the gas (uL8uL8
% , uG8 uG8
% )

and of the dispersion term̂xGuL8&. The turbulent stress tensor of

the gasuG8 uG8
% is related to that of the liquid through a turbulent

dispersion model and the turbulent stress tensor of the liquiduL8uL8
%

is computed using a second-order closure of the turbulence devel-
oped for bubbly flows,@13#. In this model, the Reynolds stress

tensor in the liquid is split into two parts: a pseudo-turbulent non-

dissipative partuL8,uL8
% (S)

induced by the bubbles displacements
and controlled by the added mass force and a turbulent dissipative

partuL8uL8
% (T) produced by the gradient of the mean velocity which

also contains the turbulence generated in the bubble wakes. After
modeling, the transport equation for each part writes as follows:

D

Dt
uL8uL8
% (S)5Diff ~uL8uL8

% (S)!1
3

20

D

Dt
aiuR% i2d1

1

20

D

Dt
auR% uR%

(8)

D

Dt
uL8uL8
% (T)5Diff ~uL8uL8

% (T)!22sym@uL8uL8
% (T)

•¹uL% #1F2
2

3
«d.

(9)

The transport equation of the pseudo-turbulent part,~Eq. ~8!!,
expresses a diffusive transport~first term of the rhs! and a
production-redistribution mechanism related to the added mass
force ~second and third terms of the rhs!. The experimental results
in homogenous bubbly flow show that the eddies produced in the
wakes of the bubbles are dissipated by viscosity before the spec-
tral transfer takes place,@9#. If we assume that this hypothesis is
valid in a wide range of bubbly flows, we can consider that the
interfacial production of the turbulent energy and its dissipation
rate are balanced in the bubbles wakes. The dissipation rate in the
transport equation of the turbulent part~Eq. ~9!! is thus identified
to the isotropic dissipation at the small scales« resulting from the
energy cascade and the transport equation of the turbulent part has
the same form as in single-phase flow.

The diffusion and redistribution terms in Eq.~9! ~first and third
terms of the rhs! are modified in order to take into account the
interfacial effects. In the model of the diffusion term, an additional
turbulent transport by the bubbles is introduced with the charac-
teristic time scaletb ; the single-phase flow model of Launder
et al. @16# is thus ‘‘generalized’’ in two-phase bubbly flows in the
form

Diff ~C!5
CSC

12a
¹@~12a!~t tuL8uL8

% (T)1tbuL8uL8
% (S)!¹C#

(10)

with t t5trace(uL8uL8
% (T))/2« andtb5CR d/uuR% u.

The redistribution termF is, in the same manner as in single-
phase flow, split into two parts, a linear partF (L) and a nonlinear
part F (NL) , so thatF5F (L)1F (NL) .
The modeling of the nonlinear partF (NL) , is based on Lance et al.
@17# experimental results in pure shear bubbly flow where they
observed a more pronounced tendency to isotropy in two-phase
flow in comparison with the equivalent single-phase flow. In order
to take into account this effect, they modified the nonlinear part of
the single-phase redistribution model by modifying the time scale
of turbulent stretching. We adopt their proposition and rewrite the
nonlinear term in a different form

F (NL)52C1~t t
211atb

21!FuL8uL8
% (T)2

1

3
trace~uL8uL8
% (T)!G

(11)

where we only consider the turbulent part of the Reynolds stress
tensor; we thus avoid inappropriate redistribution rates when the
pseudo-turbulence is important.

The linear partF (L) is modeled as in single-phase and the
Launder et al.@16# model is adopted. We also take into account
the wall effect on the redistribution mechanism using a similar
single-phase phase model. The transport equation of the dissipa-
tion rate « is also the same as in single-phase flow where the
diffusion term is modeled according to Eq.~10!.

The dispersion term̂xGuL8& is modeled as a drift velocity that
leads to a turbulent diffusion of the void fraction proportional to
the void fraction gradient and modeled according to Eq.~10!.
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4 Simulation of the Bubbly Pipe Flow Under Micro-
gravity Condition

The two-fluid model is used to simulate bubbly pipe flow ex-
periments under microgravity conditions. These experiments de-
scribed in Kamp et al.@15#, were carried out in a transparent
Plexiglas tube of 0.04-m inner diameter (D) and 3.17-m length.
The water was axially injected in the tube and the air bubbles of
1.2-mm diameter were injected through 24 hypodermic needles of
0.34-mm diameter, uniformly located in the pipe section. At a
distance of 70D from the injection, the tube was equipped with
local probes which can be moved in the radial direction:~1! a
single hot-film probe for the measurement of the mean and RMS
axial velocities of the liquid and~2! a double optical fiber probe
for the measurement of the local void fraction and the bubble
velocities and diameters. Microgravity conditions were obtained
during parabolic flights aboard the Caravelle ‘‘ZERO-G’’ aircraft
of the ‘‘Center National d’Etudes Spatiales.’’ One flight campaign
was composed of three flights with thirty parabolas each. During
each parabola a microgravity period of 20 seconds was obtained,
with a residual level of gravity smaller than 2% of the earth grav-
ity level. In order to obtain convergence of both turbulence inten-
sity and void fraction measurements, five parabolas were used for
each probe location, corresponding after subtraction of the 0 g
establishment periods to averaging over about 75 seconds. Differ-
ent flow conditions were investigated,@18#. In the present paper
the run corresponding to a superficial velocity of the liquid equal
to 1 m/s (ReD54.104) and a superficial velocity of gas of 0.023
m/s is simulated. The uncertainty on the measurements is esti-
mated to 2% for the mean velocities of the liquid and to 10% for
the RMS velocities. The relative uncertainty is about equal to 5%
on the local void fraction, 5% on the mean gas velocity and 15%
on the mean bubble diameter,@18#. The shape of the void fraction
profile in bubbly flow is similar to the radial distributions of neu-
trally buoyant particles in a water pipe flow measured by Lahey
and Bonneto@19#.

The conservation equations are written for quasi-parallel bub-
bly flows in axisymmetrical cylindrical geometry. The liquid ve-
locity components are notedu, v, w ~with the subscriptG these
velocities are related to the gas!, respectively, in the axialx, the
radialy and the azimuthalu coordinates. In absence of gravity, the
mass and momentum balances for the liquid are

]
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]y
y~12a!v% 50 (12)
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~12a!w82% . (14)

Assuming the isotropy of the turbulence in the plan (v82% 5w82% ),
Eq. ~14! reduces to

Pe~x!5p% 1r~12a!v82% . (15)

According to the modeling of the interfacial momentum trans-
fer ~Eq. ~6!! and with the boundary layer approximation, the mass
and momentum balance equations of the gas can be written as
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Equations~17! and ~18! show that the turbulence acts on the
momentum balance by the pressure term and by the turbulent
correlations of the liquid and of the gas generated by the the added
mass force. Under microgravity condition, the average contribu-
tions of the added mass and lift forces are negligible and the drag
adjusts itself to the turbulent terms in the interfacial momentum
transfer. As a result, the void fraction distribution is, in this case,
principally controlled by the turbulent terms and by the dispersion
effect due to the drift velocity.

The Reynolds stress tensor of the gas is related to that of the
liquid through a turbulent dispersion model. The components of
the Reynolds stress tensor in the gas are expressed versus the
corresponding components in the liquid in the form

uG8 uG8
%

5C11u8u8% vG8 vG8
%

5C22v8v8% uG8 vG8
%

5C12u8v8% .
(19)

The coefficients of the normal components are formulated on
the basis of the Tchen-Hinze theory developed for homogenous
turbulence,@20#:

C115C225CT

b21t r

11t r
with b5

11CA

rG

r
1CA

'
11CA

CA

and t r5
t t

tp
(20)

where tp5(rG /r 1CA) /( 3
4CD /d uuRu) is the bubble relaxation

time andt t is the time scale of the liquid turbulence. The coeffi-
cient CT is introduced in order to take into account the loss of
correlation that might occur because of the bubbles deformation,
of the flow inhomogeneity and generally speaking, of the devia-
tion from the Tchen theory hypothesis.

The formulation of the nondiagonal component of the Reynolds
stress tensor of the gas is based on the turbulent viscosity concept.
The velocity gradients in both phases are assumed to be equal~the
relative velocity is small as compared to the liquid velocity!, thus
the nondiagonal components of the Reynolds stress in the gas can
be expressed as a function of that of the liquid in the form

uG8 vG8
%

u8v8%
5

n tG

n t

5C12 (21)

wheren t is the liquid turbulent viscosity andn tG is the gas one.
Csanady@21# has proposed to link the turbulent diffusivity of

the dispersed phase to the continuous one through an expression
that takes into account the crossing trajectory effect. In the ab-
sence of mean relative velocity between phases, this effect is neg-
ligible andC12 is a constant of order unity.

Finally, the drift velocity is modeled as a dispersion effect pro-
portional to the void fraction gradient. With the quasi-parallel ap-
proximation, the relative velocity components are written as

uR%5uG%2u% and vR%5vG%2v% 2
CDT

a
Dyy

]a

]y

with Dyy5Csk~t tv82% (T)1tbv82% (S)!. (22)

A two-dimensional numerical code has been developed for
parabolic flow resolution. The numerical method is based on finite
difference scheme and the equations are solved with an explicit
method. At each iteration, the mass flow rate for the liquid is
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calculated with the updated velocity fields and the pressure drop is
adjusted considering the actual and computed mass flow rates.
The computation is repeated until convergence concerning the liq-
uid velocity is obtained within specified tolerance.

5 Results and Discussion

Velocity Profiles of the Liquid. Figures 1 and 2 present the
results of the numerical simulations of the mean velocity profiles
of the liquid in single-phase flow~for a superficial velocity of the
liquid j L51 m/s) and in bubbly flow under microgravity condi-
tion ~for j L51 m/s and a superficial velocity of the gasj G
50.023 m/s). These results are compared to the experimental data
of Kamp et al.@15# obtained for the same flow conditions and we
observe a good concordance between the numerical results and
the experimental data. In Fig. 2, the liquid velocity is scaled by
the friction velocity u* and plotted versus the wall coordinate
y15yu* /n . Figures 1 and 2 show that the bubble flow structure
in microgravity is quite the same as in single-phase flow. Particu-
larly, Fig. 2 indicates that the single-phase logarithmic profile in
the wall vicinity is maintained in bubbly flow under microgravity
with the same characteristics. This outcome indicates that under
microgravity ~without relative velocity between phases!, the tur-
bulent shear stress is not altered with respect to the single-phase
flow. Indeed, in microgravity, the momentum balance of the liquid
~Eq. ~2!! is, for low void fraction, quite the same as in single-
phase flow.

On the other hand, under microgravity condition the relative
velocity is very small and the pseudo-turbulence is consequently
negligible. In the absence of pseudo-turbulence, the turbulence
model reduces to the classical single-phase second-order closure
of the turbulence proposed by Launder et al.@16#. Consequently,
the numerical results of the turbulent intensity are roughly the
same in single-phase in normal gravity and in bubbly flow under
microgravity condition,~Fig. 3!.

Void Fraction Profiles. In the following, the effect of the
interfacial momentum transfer modeling on the phase distribution
phenomena is discussed and the analysis is focused on the role
played by the turbulent contributions~the only terms that are for
importance under microgravity condition!. For this purpose, dif-
ferent numerical simulations are performed with various interfa-
cial momentum transfer models and the void fraction distribution
is analyzed with respect to the effect of the turbulent terms in the
interfacial momentum transfer.

The first test concerns the interfacial models that only consider
the turbulent contribution of the interfacial momentum transfer
through a diffusion term proportional to the gradient of the void
fraction. In the first set of simulations, the lift force is omitted and
the dispersion effect is introduced as a drift velocity~Eq. ~22!!

with four values of the coefficientCDT (CDT50.05, CDT50.5,
CDT51 andCDT52). In this case, only the three first terms of the
rhs of Eq.~18! remain. The two first terms represent the pressure
gradient effect that was pointed out to be responsible for the
bubbles migration toward the wall in the vertical bubbly pipe flow
in normal gravity,@6,7#. This migration leads to the apparition of
the near wall void fraction peaking. An important result of the
bubbly flow in microgravity experiments is to show that, even
though the gradient of the liquid turbulence is not significantly
modified in microgravity, the radial gradient of the void fraction is
inverted depending on whether the gravity is active or not~de-
pending on whether the interfacial momentum transfer associated
with the average relative velocity is important or not!. Since the
gradient of the turbulent components of the Reynolds stress tensor
is not inverted in microgravity condition, the numerical results of
the first set of simulations exhibit a near wall void fraction peak-
ing that is not observed in the experiment~Fig. 4!. The dispersion
term yields a simple diffusion effect that leads to an attenuation of
the near wall void fraction peaking but can’t obviously invert the
void fraction gradient to produce the void fraction maximum in
the centerline of the pipe as observed in the experiment. This
result clearly shows that the formulation of the forces exerted by
the liquid on the bubbles is incomplete and set the problem of the
specific role played by the turbulent contributions in the interfa-
cial transfer.

In the second set of simulations, the small effect of the lift force
is highlighted. The dispersion effect is maintained with the coef-
ficient CDT51 and the lift force is introduced with the coefficient
CL that takes values between 0 and 0.2. The numerical results of
the second set of simulations presented in Fig. 5 show that the
effect of the mean lift force on the phase distribution phenomena

Fig. 1 Mean velocity profiles in single-phase pipe flow in nor-
mal gravity and in bubbly pipe flow under microgravity condi-
tion. Comparison of the numerical results: „ single-phase
flow, - - - bubbly flow … with the experimental data „l single
phase flow, m bubbly flow in microgravity … of Kamp et al. †15‡.

Fig. 2 Logarithmic near wall profiles of the mean velocity
simulated in single-phase pipe flow in normal gravity „ … and
in bubbly pipe flow „- - -… under microgravity condition. Com-
parison with the experimental data „m bubbly flow in micro-
gravity … of Kamp et al. †15‡.

Fig. 3 Longitudinal turbulent intensity profiles in single-phase
pipe flow in normal gravity „ … and in bubbly pipe flow under
microgravity condition „- - -…. Experimental data „l single
phase flow, m bubbly flow in microgravity … of Kamp et al. †15‡.
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is insignificant: As expected in microgravity, the mean relative
velocity is very small, then the lift force vanishes.

In the third set of simulations, the sensibility of the void frac-
tion distribution to the turbulent correlations issued from the
added mass force is analyzed. For this purpose the turbulent cor-
relations generated by the added mass force are introduced in the
expression of the interfacial force~last term of Eq.~17! and fourth
term of the rhs of Eq.~18!!. In these simulations, the coefficient
C12 of Eq. ~21! is taken equal to 1, and the coefficientCT takes
values between 0.15 and 0.45. Considering the previous numerical
results, the mean lift force is neglected, (CL50) and the drift
effect is maintained with the coefficientCDT51. In Fig. 6, the
numerical results are compared to those obtained without the tur-
bulent contribution of the added mass term (C115C2251) and to
the experimental data of Kamp et al.@15#.

Figure 6 shows that the turbulent correlations in the added mass
force provoke an inversion of the action of the fluctuating flow
field ~the only effects considered in these simulations! and allow,
after suitable adjustment of the coefficientCT , to obtain a maxi-
mum of the void fraction in the centerline of the pipe as observed
in the microgravity experiment. The interpretation of the transver-
sal momentum balance of the gas phase provides an explanation
to the effect of the turbulent correlations issued from the added
mass force on the interfacial momentum transfer and thus on the
phase distribution phenomena. Assuming the turbulence isotropy
in the transversal plan, the transversal momentum balance equa-
tion of the gas is written as
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In Eq. ~23!, the turbulent contribution of the added mass force is
split into two terms~the two last terms!. The last one is a turbulent
dispersion proportional to the gradient of void fraction; this term
is similar to the drift velocity and leads, in a same manner, to a
diffusion of the void fraction. The second term due to the turbu-
lent contribution of the added mass force~second to last term in
Eq. ~23!! is, for low void fraction, opposed to the pressure term
~first term! provided that the coefficientC22 exceeds the unity. In
Fig. 7, we present, for the different simulations, the numerical
profiles of the coefficientC22. This figure shows that when the
coefficientCT is greater than 0.3, the turbulent correlations of the
gas exceed three times the turbulent correlations of the liquid in
the near wall region. Similar turbulent levels of the gas were
observed in bubbly mixing layer,@11#. With such a level of fluc-
tuating gas velocity, the action of the turbulent correlations ob-
tained by averaging the added mass force prevails over the pres-
sure term. The action of the turbulent flow field on the bubbles is
thus inverted and the model allows to reproduce the maximum of
the void fraction in the centerline of the pipe as observed in the
experiment.

The coefficientCT was adjusted from these numerical simula-
tions and the valueCT50.35 yields the better void fraction pre-

Fig. 4 Effect of the drift on the void fraction profiles in bubbly
pipe flow under microgravity condition; simulations without
the turbulent contribution of the added mass force „lift force
coefficient CLÄ0…: simulations with " " " " CDTÄ0.05; - - -CDT
Ä0.5; - - -CDTÄ1; CDTÄ2, l experimental data of Kamp
et al. †15‡

Fig. 5 Effect of the lift force on the void fraction profiles in
bubbly pipe flow under microgravity condition; simulations
without the turbulent contribution of the added mass force
„drift coefficient CDTÄ1…: simulations with " " " " CLÄ0; - - -
CLÄ0.05; CLÄ0.1; CLÄ0.2, l experimental data of
Kamp et al. †15‡

Fig. 6 Effect of the added mass turbulent term in the transver-
sal momentum balance on the void fraction profiles in bubbly
pipe flow under microgravity condition „drift coefficient CDT
Ä1, lift coefficient CLÄ0…: simulations with " " " " C11ÄC22
Ä1; - - - CTÄ0.15; CTÄ0.3; CTÄ0.45, l experimen-
tal data of Kamp et al. †15‡

Fig. 7 Ratio between the normal components of the Reynolds
stress tensor in the gas and in the liquid phases in bubbly pipe
flow under microgravity condition „drift coefficient CDTÄ1, lift
coefficient CLÄ0…: simulations with " " " " C11ÄC22Ä1; - - -CT
Ä0.15; CTÄ0.3; CTÄ0.45
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diction. This value allows also to obtain good prediction of the
void fraction distribution in wall bounded bubbly flows in normal
gravity, @22#.

The previous numerical results are obtained with the coefficient
C1251 in Eq. ~19!: The nondiagonal component of the Reynolds

stress tensor of the gasuG8 vG8
% is assumed to be equal to that in the

liquid u8v8% . In this case the turbulent correlations of the gas and
of the liquid in the longitudinal momentum balance equation of
the gas~Eq. 17! are in equilibrium and have no effect on the force
exerted by the liquid on the bubbles. In the last set of simulations,
the effect of these turbulent correlations on the interfacial momen-
tum transfer and thus on the phase distribution phenomena is ex-
amined. For this purpose, the same conditions as before are con-
sidered (CL50, CDT51), and the coefficientCT is taken constant
equal toCT50.35 ~this value yields the better void fraction pre-
diction!. The numerical results are presented for values ofC12
varying from 0.5 to 2 and compared to the experimental data of
Kamp et al.@15# in Fig. 8. It should be observed that with the
value of the coefficientCT50.35, the dispersion effect due to the
drift velocity has low effect in comparison with the dispersion
effect due to the last tem of Eq.~23!. Figure 8 shows that, in
parallel bubbly flow, the turbulent contribution of the added mass
force in the longitudinal momentum balance of the gas has a small
effect on the transversal void fraction distribution.

Conclusion
The bubbly pipe flow in micro-gravity is an interesting test case

for two-fluid models. Indeed, in the absence of a mean velocity
between the gas and liquid phases, the lift force vanishes and the
radial distribution of the bubbles is mainly controlled by the tur-
bulent effects. This situation allows one to analyze the role played
by the turbulence in the interfacial momentum transfer. In fact, the
comparison of the numerical simulations with experimental data
highlights the shortcomings of the existing models and allows the
modeling of the interfacial momentum transfer to be improved.
The numerical simulations provide evidence that the turbulence
plays a part on the bubbles distribution not only by the pressure
term, but also by the turbulent correlations obtained by averaging
the interfacial force, particularly in the added mass term.

Despite the relatively simple and perhaps incomplete formula-

tion of the turbulent terms in the interfacial momentum transfer
adopted in this two-fluid model, the simulations clearly show
some aspects of the role of the turbulent contributions in the in-
terfacial momentum transfer. Of course we are still far from a
general modeling of the interfacial transfer in bubbly flows. We
have to examine more precisely the role of the other turbulent
contributions in the interfacial momentum balance and to improve
the representation of the dispersed phase turbulence. We can ex-
pect some realistic progress in this direction from direct numerical
simulation applied to dispersed two-phase flows.
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Modeling and Direct Simulation
of Velocity Fluctuations and
Particle-Velocity Correlations in
Sedimentation
In this paper we present direct numerical simulations of monodisperse and polydisperse
suspensions of non-Brownian particles sedimenting at low Reynolds number. We describe
a scheme to generate ergodic ensembles of random particulate systems and a numerical
procedure for computing interactions among spherical particles based on Ewald summa-
tion technique for hydrodynamic mobility tensors. From the generation process truly
random both monodisperse and multimodal size distributions of particles were obtained
for dilute and moderate densities based on a minimum energy criterion. Concerned with
computations of the Ewald sums our numerical procedure drastically reduces the CPU
simulation time providing results of the hindered settling function in good agreement with
available experimental data and asymptotic results for ordered and random periodic
arrays of particles. We show new computer simulations with no flux boundary perpen-
dicular to gravity and periodic boundary conditions in horizontal direction. The simula-
tions reproduce the experimental correlation-time and anisotropy of the velocity fluctua-
tions, but have the magnitude of these fluctuations increasing proportional to the size of
the system.@DOI: 10.1115/1.1502665#

1 Introduction
The sedimentation of solid particles in a viscous fluid is a com-

mon industrial process in civil, chemical, and oil engineering.
Much theoretical and experimental research has been directed at
determining the sedimentation velocity for monodisperse suspen-
sions,@1#. The most popular result is the simple formula of Rich-
ardson and Zaki@2#: ^U&5U0(12f)n, whereU052Dra2g/9m
is the Stokes velocity for an isolated particle,a is the particle
radius,Dr denotes the difference between the density of the solid
particles and fluid,m is the fluid viscosity,g is the acceleration
due to gravity, andn55.1 for spherical particles with low Rey-
nolds numbers. On the theoretical side, the origin, significance,
and interpretation of the convergence difficulties in calculating the
sedimentation velocity are well understood after the rigorous theo-
ries of Batchelor@3,4# for predicting sedimentation velocities in
monodisperse and polydisperse dilute suspensions of spheres at
low Reynolds number. On the other hand the problem of velocity
fluctuations in sedimentation is still unresolved theoretically,
@5,6#. Theories,@7–13#, and numerical computations,@14–17#,
with randomly positioned monodisperse particles find that fluctua-
tions diverge with increasing system size. Most experiments find
differently, @18,19#.

The first theoretical work to investigate the convergence prob-
lem of the rms fluctuations in sedimentation was developed by
Caflisch and Luke@7#, who pointed out that Batchelor’s renormal-
ization does not resolve the divergence associated with calculating
the variance of the sedimentation velocity. A physical scaling ar-
gument based on buoyancy-driven convection in sedimentation
was given by Hinch@8#. The scalings confirmed the predictions of
Caflisch and Luke. Koch@10# has adapted Hinch’s scalings to
gas-solid suspensions and studied the behavior of fluctuations in a
range of moderate particle Stokes numbers, 1!St!f23/4. Sev-
eral theoretical approaches have attempted to explain the fluctua-

tion screening in sedimentation. Koch and Shaqfeh@9# argued that
screening of the velocity fluctuations results from correlations in
the particle distribution. The distribution is characterized by a net
deficit of exactly one particle surrounding any test particle. This
theory predicts that the velocity fluctuations scale likeU0 , inde-
pendent of the solid volume fractionf, and that the correlation
length scales asaf21, in contrast to the experiments carried out
by Segre´, Herbolzheimer, and Chaikin@19# and Guazzelli@6# who
found velocity fluctuations of orderU0f1/3 and correlation length
of order 10af21/3. Recently, Brenner@13# has examined through
scaling and numerical simulations the effect of side walls on ar-
guments leading to the prediction of diverging velocity fluctua-
tions with container size. The analysis has not definitively ex-
plained the dependence of the velocity fluctuations on the size of
the settling box, although it seems to predict a divergence weaker
than Caflisch-Luke theory. Dynamical simulations of sedimenting
particles with point particles approximation or full hydrodynamic
interaction in periodic systems, and large-scale lattice-Boltzmann
numerical simulations support the conclusion, finding an increase
in the magnitude of the velocity fluctuations and hydrodynamic
diffusivity with the size of the numerical box,@14–17,20#.

Several experiments have also been carried out to investigate
fluctuations in sedimentation. Davis and Hassen@21# examined
the spreading of the interface at the top of a sedimenting, slightly
polydisperse suspension of non-Brownian particles. An investiga-
tion of the simultaneous effects of self-sharpening and velocity
fluctuations in a sedimenting suspension of noncolloidal particles
has been made by Lee et al.@22#. Ham and Homsy@23# carried
out experiments to investigate the nature of the motion of a test
particle sedimenting in the midst of a suspension of like particles.
Their experiments found that fluctuations in the sedimentation ve-
locity over relatively short settling distances are large~ranging
from 25% to 46% of the mean! with dimensionless self-dispersion
coefficients parallel to gravity increasing from approximately
2aU0 at f525% to 6aU0 at f55%, which is about a factor of
5 smaller than the gradient diffusivity reported by Lee et al.@22#.
Using a multiple light scattering technique, Xue et al.@24# mea-
sured the effects of hydrodynamic interactions on the average
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sedimentation velocity, its variance and the short-time self-
diffusion coefficient in a concentrated hard-sphere colloidal sus-
pension. Important experiments in sedimentation were carried out
by Nicolai et al.@25#, who have also investigated velocity fluctua-
tions in a monodisperse sedimenting suspension of spheres under
conditions of low Reynolds number. These experiments estimated
velocity fluctuations between 75% and 170% of the mean, larger
than those of Ham and Homsy@23#. In addition they observed a
strong anisotropy in the velocity fluctuations and self-diffusivities,
D i /D''5 at 5%, although substantially smaller than that found
by the theory of Koch@14# and numerical simulations of Ladd
@15,16#. The indices' andi denote quantities parallel and perpen-
dicular to gravity. At moderate concentration, Nicolai and Guaz-
zelli @18# found differently from the theories and computations
that particle velocity fluctuations and hydrodynamic self-
dispersion coefficients did not depend on the container dimension
as the inner width of the vessel varied by a factor of four. The
experiments,@18#, unfortunately disagree with the theoretical pre-
dictions. This contrary result may be an indication that a well
mixed particle distribution cannot, in principle, remain unchanged
during sedimentation, and that information about the evolution of
the microstructure in time is required to understand the behavior
of the velocity fluctuations. We argue that after the suspension
evolves the strong convection current observed in the initial stages
of sedimentation will remove horizontal fluctuations in the num-
ber density leading to a saturation of velocity fluctuations. We
should also mention here the related phenomenon of shear-
induced hydrodynamic diffusion in sheared suspensions,@26,27#.

The objective of this paper is to investigate by computer simu-
lation the average sedimentation velocity, the particle velocity
fluctuations, and particle-velocity correlations during sedimenta-
tion. We examine monodisperse and bidisperse suspensions with
randomly positioned particles for different volume fractions and
size of the container. In Section 2 we will present scaling argu-
ments for velocity fluctuations and dispersion in sedimentation.
The basic method is presented in Section 3 where we describe in
detail both the calculation of the far-field interactions and short-
range interactions for closing particles. In Section 4 the numerical
scheme for polydisperse suspensions will be explained. This com-
putational scheme will then be tested in Section 5 by comparing
results of sedimentation velocity for ordered and random suspen-
sions with analytical predictions and Richardson-Zaki empirical
correlation. Simulation results for monodisperse and bidisperse
sedimentation are presented. Conclusions will be stated in
Section 6.

2 Scalings
One can begin to understand the scaling of the velocity fluctua-

tions by considering a box of sizel containingN particles distrib-
uted uniformly, with the number of particles related to the size of

the box and the volume fractionf by N5 l 3f/ 4
3pa3. If the box is

divided into two equal parts by a vertical plane, due to statistical
fluctuations one half of the box will typically containN/21AN
particles, whereas the other half will containN/22AN. This im-
balance drives convection currents during the sedimentation pro-
cess. The extra weight on the heavy side ismgAN, with m
5

4
3pa3Dr. Balancing this fluctuation in weight with a Stokes

drag 6pmU8l on the velocity fluctuation, and usingU0

52Dra2g/9m, we find the fluctuation in the velocities.

U82;U0
2f

l

a
(1)

With this velocity fluctuation we can estimate the hydrodynamic
self-diffusivity asD;U8l , corresponding to the particle velocity
remaining correlated for a timetc5O( l /U8). Thus

D;aU0f1/2S l

aD 3/2

. (2)

This scaling argument helps to explain how velocity fluctuations
and hydrodynamic self-diffusivity in a random dilute sedimenting
suspension depend on the size of the system.

In the simulations we shall be monitoring the horizontal varia-
tion of density which is responsible for the convection currents in
sedimentation. This is the important origin of the large velocity
fluctuations which has not been made clear by previous works
who have worried about Koch and Shaqfeh’s mass deficit theory,
@9#.

3 Statement of the Problem
Consider a suspension ofN rigid and spherical particles inter-

acting hydrodynamically. The spheres differ in radius and density.
The particulate dispersion is subject to a sedimentation process
through a Newtonian fluid of viscositym and densityr f with
low-Reynolds-number flow about each particle. The system occu-
pies a three-dimensional unit cell represented by a prismatic con-
tainer with dimensionsd3 l 3h. In order to simulate an infinite
suspension, the unit cells comprise a periodic spatial structure like
a Bravais lattice~see Fig. 1!.

Fig. 1 Representation of a typical lattice used in the simulations. The particles are
randomly distributed in a periodic cell with fÄ0.03. „a… Side view; „b… three-
dimensional perspective view.
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In the case in which the particulate phase consists ofm species
of particles, one follows an usual notation and denotes, respec-
tively, the radius, density, number density, and volume fraction of
each particle of speciess by as , rs , ns , andfs . The dimension-
less polydispersity parameters concerned with speciess will be
denoted by aspect ratiosls and reduced density ratioshs as fol-
lows:

ls5
as

a
, hs5

rs2r f

r2r f
, ~s51,2, . . . ,m!, (3)

wherea and r correspond, respectively, to the characteristic ra-
dius and density of the species adopted as the reference for non-
dimensionalization purposes. The other species are expressed in
terms of the parametersl and h. Thus, the terminal settling ve-
locity of an isolated particle, the Stokes-Einstein diffusivity and
the Péclet number of speciess are, respectively,

U0
(s)5hsls

2U0 , D0
(s)5ls

21D0 , Pe(s)5hsls
2Pe0 , ~s

51, . . . ,m! (4)

where

U05
2

9m
a2~r2r f !g, D05

kT

6pma
, Pe05

aU0

D0
, (5)

g is the gravitational force per unit mass,k is the Boltzmann
constant andT is the absolute temperature. The length quantities
are made nondimensional usinga as the characteristic length
scale. The Stokes hydrodynamic drag 6pmaU0 is taken as the
characteristic reference scale for force.

3.1 Lattice Sums. In view of the well-known convergence
problem inherent in the long-range nature of the hydrodynamic
interaction, one adopts a formulation based on the Beenakker’s
Ewald-summed Rotne-Prager tensor,@28–30#, under the assump-
tion that pairwise additivity of the hydrodynamic interaction is
plausible at dilute conditions. An extension of the formulation
proposed by Beenakker for hydrodynamic interactions in a hetero-
geneous suspension and some basic background information
about the periodic array in space are presented next.

Let the center positions of theN spheres within a unit cell be
denoted by the set of vectorsCN5(x1 , . . . ,xN). Consider a peri-
odic lattice in which the setCN assumes the general formCN
5(xg1 , . . . ,xgN)5(x11xg , . . . ,xN1xg) where

xg5~g1d,g2l ,g3h!, ~g1 ,g2 ,g350,61,62, . . . ! (6)

defines the lattice points, obtained by a linear combination of the
basic orthogonal vectorsde1 ,le2 ,he3 , g5$g1 ,g2 ,g3% being the
set of integer coefficients, named the cell indices, and the set of
vectors $e1 ,e2 ,e3% being the canonical base of the Euclidian
space.

The reciprocal lattice vectorskz specifies lattice waves satisfy-
ing the periodic boundary condition. Thus the functioneikz•xg is
periodic with respect to the basic vectors and assumes a unit value
for all gPZ. The vectorskz have the dimension of the inverse of
length and are written as

kz52pS z1

d
,
z2

l
,
z3

h D , ~z1 ,z2 ,z350,61,62, . . . ! (7)

wherez5$z1 ,z2 ,z3% is the cell index of the reciprocal lattice.
The evaluation of the sedimentation velocityUa of a test par-

ticle ~numbered by the indexa! considering the flow disturbances
induced by the neighboring ones involves the computation of two
mobility matrices. The first matrix is relative to an isolated par-
ticle being represented by an isotropic tensor. The second one
consists of a two-sphere mobility which considers the particle
images periodically replicated. The last mobility includes terms
with respect to the lattice sums in real and reciprocal space, being
the sums convergence rate controlled by a positive parameterj.
One attributes to the convergence parameter a valuej

5p1/2V21/3 suggested by Beenakker@28# as a good choice in the
case of a simple cubic lattice, whereV denotes the volume of the
unit cell.

Now, consider an arbitrary pair of particles numbered by the
indicesa andb, pertaining to speciess and p, respectively. The
velocity of a particlea is given by

Ua5Ma
•Fa1 (

g
xgbÞxa

(
b51

N

M (ps)~xgb2xa!•Fb

1
1

V (
z

kzÞ0

(
b51

N

M (rs)~kz!•Fbcos@kz•~xb2xa!#, (8)

where

Ma5S 126jp21/22
40

3
p21/2j3D I . (9)

Ma defines theath isolated particle mobility andI denotes the
unit second rank tensor. The periodic two-sphere mobilities are
defined by the following expressions:

M (ps)~r !5H F3j3r 22
9

2
j1~4j7r 4220j5r 2114j3

1jr 22!lGp21/2exp~2j2r 2!1S 3

4
r 211

1

2
r 23l D

3erfc~jr !J I1H F23j3r 21
3

2
j1~24j7r 4

116j5r 222j323jr 22!lGp2 1/2exp~2j2r 2!

1S 3

4
r 212

3

2
r 23l Derfc~jr !J erer (10)

M (rs)~k!5S 12
1

3
k2l D S 11

1

4
j22k21

1

8
j24k4D6pk22

3expS 2
1

4
j22k2D ~ I2ekek!. (11)

M (ps) is the mobility associated to lattice sum in real space,M (rs)

concerns with the sum in reciprocal space,r 5uxgb2xau, er

5r /r , ek5k/k, l5
1
2(11ap /as) and erfc is the complementary

error function. The mobilities presented from the Eq.~9! to ~11!
provide two different levels of hydrodynamic interaction approxi-
mation. The terms which includel2 provide a leading order cor-
rection due to the finite size of the particles.

Considering the system under the action of gravity and that the
particles are torque-free, the forceFa acting on a particlea of
speciess is given by

Fa52hsls
3e31f l

a1fc
a . (12)

The term2hsls
3e3 is the net weight of the particlea andf l

a is an
artificial short-range repulsive force acting among pairs of par-
ticles when they are close together andfc

a is a restoring force to
prevent eventual overlaps. One discusses short-range interaction
next.

For a mobility problem the particle trajectories are obtained
simply by integration of the kinematic equation

Dxa

Dt
5Ua, xa~0!5xo

a . (13)

3.2 Short-Range Repulsive Forces. As mentioned above,
the mobility tensors include only the far-field interactions which
cannot capture the lubrication forces arising from the squeezing
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flow within the gap between two approaching spheres. As a con-
sequence, in a time evolution of disordered suspensions it is com-
mon the occurrence of numerical errors owing to occasional over-
laps between the spheres, even in dilute systems. Such a problem
is critical in regions of large solid volume fractions especially
when particles have settled at the bottom of the container.

In view of this a lubrication short-range force is modeled here
by employing an artificial repulsive force acting among pairs of
particles when they are close together,@11#. Introduction of this
extra repulsive force to prevent particles clusters is not unrealistic
because forces acting between particles in nature and in laboratory
practice are often repulsive. Furthermore, the pairwise addition of
near-field lubrication forces in Stokesian dynamics simulations of
Brady and Bossis@31# requires time steps prohibitively small to
prevent overlaps.

The expression for this repulsive force is given by

f l
a5C1hplp

3expF2
~2«ab!

lpC2
G r̂ , for 0,~2«ab!,«0 (14)

whereC1 and C2 are arbitrary numerical parameters which rep-
resent, respectively, the intensity and the range of the repulsive
force, «ab5(ls1lp)2uxb2xau is the virtual overlap, and«0 is
the interparticle gap for which the forcef l

a is cut off. The param-
etersC1 , C2 , and «0 were determined by means of numerical
experiments with two unequal sedimenting spheres with an up-
stream impact parameter ofal5lpa. Figure 2 presents the time
evolution of the gap between two closing unequal spherical par-
ticles. The accuracy of the numerical simulation was tested by
performing calculations for two interacting particles that have
been studied extensively in the past and for which analytical and
simulation results are available for comparison,@32#. For a time
step~1/100! Stokes time it is found a minimum gap around 1/10
of the particle radius, when imposing the above short-range repul-
sive force with the appropriate constantsC1 , C2 , and«0 . Typical
values for these constants are:C1510, C250.1, and«050.1.

Although the lubrication forces have a divergent character
when the particles come close at the creeping flow regime, it is
considered in addition the restoring forcefc

a due to eventual elas-
tic collisions. For simplicity it was employed a linear force-
displacement relation for interparticle contact in such a way that
the normal elastic force is proportional to the virtual overlap of
the particles, so that

fc
a52Ke«ab r̂ , for «ab.0 (15)

whereKe denotes the contact stiffness, assumed to be constant,
whose value depends upon material and geometric properties of
the colliding spheres. After several tests we found a typical value
for this constant equal to 100. Here, the repulsive forces may be
also employed to model particle-wall interactions in a system with
no flux boundaries parallel to gravity.

3.3 Impenetrable Boundaries. The image system is con-
structed by considering a unit cell with dimensionsd3 l 32h,
being the real and reciprocal lattice vectors defined now asxg
5(g1d,g2l ,g32h) andkz52p(z1 /d , z2 / l ,z3/2h), respectively,
where$g1 ,g2 ,g3% and$z1 ,z2 ,z3% are sets of integer coefficients.
The procedure to obtain the flow solution within a no flux bound-
ary is essentially to consider a linear combinationu(x)
5u(x;xa

s )1u(x;xa
i ) satisfying the following boundary condi-

tions:

5
u~x!,v~x!,w~x! periodic in x and y directions

with period d and l , respectively

u~x!,v~x! periodic in z with period h

w~x!50 on z50 and z5h,

(16)

whereu, v and w denote the components of the fluid velocity.
The termu(x;xa

s ) corresponds to the periodic flow solution due to

a stokeslet located atxa
s 5(x,y,z). The complementary term

u(x;xa
i ) corresponds to the image system which consists of a

stokeslet equal in magnitude but opposite in sign located at the
image pointxa

i 5(x,y,2z), @33#.
Using such an image system with Ewald’s summation tech-

nique in the version of Beenakker@28# we arrive at the fundamen-
tal solution for the Stokes flow induced by a lattice of stokeslets
with side periodicity and impenetrable top and bottom. The gen-
eral form for the velocity of a particlea is given by

Ua5Ma~j!•Fa1(
b51

N

G~xb2xa ,j!•Fb, (17)

whereG(xb2xa ,j) is the Ewald summed mobility tensor, given
by

G~xb2xa!5 (
g

xgbÞxa

J(ps)~xgb2xa!1
1

V (
z

kzÞ0

M (rs)~kz!Q

(18)

being the kernel tensorJ(ps) and the functionQ defined as

J(ps)5M (ps)~xgb
s 2xa ,j!2M (ps)~xgb

i 2xa ,j!, (19)

Q5cos@kz•~xb
s 2xa!#2cos@kz•~xb

i 2xa!#. (20)

The termM (ps) is the periodic Green’s function in the physical
space presented in Section 3.1 and the vectorsxgb

s 5(x,y,z)1xg

and xgb
i 5(x,y,2z)1xg locate the source point and the image

point, respectively.

4 Numerical Method
Equations~13! and~17! will be applied to examine the dynam-

ics of N particles sedimenting and interacting hydrodynamically
within a container with a no flux boundary perpendicular to grav-
ity direction and periodic boundary conditions in the horizontal
direction. This type of formulation represents a mobility problem
with hydrodynamic interactions, calculated by using pairwise ad-
ditivity ~i.e., superposition of velocity in the mobility matrix!. It
should be important to note that the moderate number of particles
used in the present simulations makes the effect of periodicity
dominate the sedimentation velocity at small particle volume frac-

Fig. 2 Time evolution of the dimensionless gap between two
unequal sedimenting spheres. The figure is for an aspect ratio
of l l ÕlsÄ1.75 with upstream impact parameter l l . In the inset
are represented three steps of the time evolution, being „b… the
step of minimum interparticle gap.
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tion, and the relatively low number of multipoles included~i.e.,
degenerate quadrupole only! reduces the accuracy at highf. Im-
provements could be made on both fronts by including more mul-
tipole on the one hand and more particles on the other. Either of
these approaches, however, increases dramatically the number of
degrees-of-freedom and results in prohibitive computation times,
even avoiding the costly (N3) inversion from hydrodynamic lu-
brication. The simulations here requires for the calculation of the
mobility interactionsO(N2) operations, which is still excessive at
moderatef.

4.1 Sampling Techniques. In this section, we describe a
procedure based on the method proposed by Metropolis et al.@34#
to simulate the initial condition for either monodisperse and mul-
timodal size distributions of many interacting spherical particles.
The main aim of this method is to generate ergodic ensembles in
which each member consists ofN mutually impenetrable spheres
whose centers are randomly distributed in a prismatic unit cell of
volumeV.

Consider the rigid sphere system defined in Section 3. The mu-
tual impenetrability of the spheres imposes that the center of a test
sphere of radiusas cannot be located within an excluded volume
shell ap,ur u,ap1as of any other one of radiusap . In other
words, these systems are characterized by a pair potential which is
zero when the interparticle distance is greater thanap1as and
infinite whenur u<ap1as .

In order to simulate a narrow fluid gap separating the spheres
when they are in close proximity, a geometric parametere is in-
corporated into the excluded volume. The amount of this gap is
arbitrary but it is determined by considering the physical phenom-
enon to be simulated, such as sedimentation or shear flow. This
parameter is also considered in order to calibrate numerically the
minimum distance between spheres during the generation process.
The value ofe must be chosen with some care, since it magnifies
the exclusion-volume effects, and consequently exerts an impor-
tant influence upon the randomness degree of the distributions. In
terms of the aspect ratios and the mentioned geometric parameter,
the numerical excluded volume is written as

lp1
1

2
e,ur u,lp1ls1

1

2
e ~p,s51, . . . ,m!. (21)

The generation procedure for a given volume fractionf
5(4/3)p( i 51

m nil i
3 begins by placing sequentially the required

numberN of particles within the periodic domain under the non-
overlap condition. Increasinge, the impenetrability condition im-
poses more severe restrictions on available particle arrangements
and decreases the physically accessible space.

From the setCN5(x1 , . . . ,xN), which characterizes the static
initial configuration of the particles, one attributes to the system a
potential energy, defined by

E~CN!5(
a51

N

(
b5a11

N

V~r ab!, (22)

whereV(r ab) is an arbitrary pair potential which falls off rapidly
with distance r ab5uxb2xau, and gives a weight P(CN)
5exp(2E), which defines an ergodicity criterion.

The system is subject to a temporal evolution simulated nu-
merically as a random diffusive walk governed by the following
Brownian-diffusion equation

xn115xn1Pe(s) dt1A6ls
21dt«n (23)

where«n is a random vector with each component having zero
mean and unit variance and being generated independently of the
other components and independently of previous time steps. Nu-
merically, this random vector is obtained by means of a standard
random number generator with enough independence between ad-
jacent numbers,@35#. During the diffusion simulations the deter-
ministic displacement Pe(s)dt was neglected by the imposition of

Pe(s)!1, which leads to isotropic particle motion. While the sys-
tem evolves, the impenetrability condition was employed based
upon the excluded volume criterion given by Eq.~21!, in which e
is set to a value representative of the lubrication gap.

The evolution of the system from the initial distribution to sub-
sequent nonoverlapping configurational states, in particular the
motion of each particle, is subject to an energy criterion which
prescribes: If the movement of a particlea implies in a reduction
of the system energy, the new position vectorxa

n11 will integrate
into the setCN by substituting the elementxa . Otherwise, one
considers the energy incrementDE due to movement and takes a
random number« between 0 and 1. The positionxa

n11 will
be allowed only if «,exp(2DE). In the case in which
«.exp(2DE), the new position is forbidden and the prescriptions
outlined above are similarly followed for the next particle.

4.2 Computation of Hydrodynamic Interactions. To
compute hydrodynamic interactions among spherical multisized
particles in a semi-dilute (f<0.15) suspension, one presents a
numerical procedure based upon the Ewald summation technique
for the Rotne-Prager mobility tensor,@28#. Although the Ewald
sum technique overcomes the convergence problems intrinsic to
the long-range nature of interparticle interactions, it demands
great computational effort which decreases the suitability of the
method for large systems. It is the purpose of the method pre-
sented below to reduce the computational effort in order to permit
a study of some aspects of microstructural dynamics and an evalu-
ation of transport properties based on meaningful statistics. Our
computational resource permits the simulation of monodisperse
and polydisperse suspensions characterized byN of O(103), N
being the number of particles in a periodic cell.

The lattice sum computation, in each time step of the temporal
evolution, demandsO(npcN

2) computations,npc being the num-
ber of periodic cells in the lattice. A significant computational
saving is achieved by tabulatinga priori the periodic Green’s
functions~10! and ~11! in order to avoid the computation of the
mobility tensor during the simulation. This scheme takes advan-
tage of an important feature of the two-sphere mobility, which is a
function of the relative separation only. Although the computa-
tional effort still scales withN2, the avoidance of lattice sum
computations reduces drastically~about 98%! the CPU time.
However, the computational effort growing withN2 imposes se-
vere constraints on system size and consequently a number of
particles greater than few thousands is prohibitively large for dy-
namic simulations. A typical number of particles we simulated in
a unit cell is 300 for dynamic simulations with 10 realizations, and
1000 for static simulations averaging over a hundred particle con-
figurations. Typically it takes 5–10 s CPU time for the simulation
of one time step (Dt50.01a/U0) on a 933 MHz Dell work sta-
tion. The maximum memory required for the largest problem and
the tabulation process is around 25–100 MB. Recently, Sireou and
Brady @36# have described a method for calculating the hydrody-
namic interactions among particles in suspension at small Rey-
nolds number based on a Stokesian dynamics method with a re-
duced computational cost ofO(N ln N). However, the work was
limited to evaluation of macroscopic properties of static suspen-
sions ~not evolving in time!. We should also mention here the
existence ofO(N) algorithms developed by Ladd@37# and by Mo
and Sangani@38#. Ladd’s method is based on the lattice-
Boltzmann technique for finite Reynolds number ofO(N), al-
though he recognizes that there are several possible sources of
error in his simulations. Sangani and Mo’s algorithm follows a
well-known approach by calculating the full resistance matrix
through a fast multipole summation technique and inverting the
resulting matrix iteratively. This method is in principleO(N),
although the iterative solution employed for these authors appears
to perform poorly.
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5 Numerical Results
We first test the accuracy of the method by comparing sedimen-

tation velocities given by the present simulation with some ana-
lytical and experimental results available.

5.1 Hindered Settling Function for Ordered Suspensions.
The first case we consider is a periodic arrangement of spheres
sedimenting in a simple cubic lattice. For this case the theoretical
hindered settling function scales asO(f1/3) for point particle
force ~i.e., dilute limit!, @39#. We verify our numerical scheme by
comparing calculated sedimentation rates with the asymptotic,
low-volume fraction solutions of Sangani and Acrivos@40#, given
by

f ~f!5121.7601f1/31f21.5593f213.9799f8/323.0734f10/3

1O~f11/3!. (24)

Figure 3 shows the settling velocity for a simple cubic array of
spherical particles as a function off1/3. It can be seen that the
numerical results, obtained by considering the finite size of the
particles, yield close agreement with the theoretical predictions
given by Eq.~24! in the semi-dilute particle volume fraction range
f<0.20. It is also displayed the point-particle numerical results
in order to illustrate the effect of the level of the hydrodynamic
approximation on the sedimentation velocity.

5.2 Hindered Settling Function for Disordered Suspen-
sions. The calculation of the settling velocity averaged over sev-
eral instantaneous random configurations of particles constitutes a
more realistic test than the above. In this section we validate the
hindered settling function by means of comparisons with
Richardson-Zaki@2# correlation,

f ~f!5~12f!n, (25)

for which we assumed an exponentn55.1, and with the lowf
asymptotic result of Batchelor@4# for random and statistically
homogeneous suspensions, given by

^U i&/U05 f ~f!;125f1O~f2!. (26)

It is also made a comparison with the analytical expression of
Brady and Durlofsky@41#

f ~f!5
^U i&
U0

511f2
1

5
f22

6

5
fS 52f11/2f2

112f D , (27)

derived by considering the Rotne-Prager approximation for the
Percus-Yevick hard-sphere radial distribution function,@41#.

The instantaneous mean of the velocities of the sedimenting
particles is

Ū~ t !5
1

N (
i 51

N

Ui~ t !. (28)

Figure 4 shows the results for the dimensionless average sedi-
mentation rate as a function of the particle volume fraction for a
random monodisperse suspension together with Eqs.~25! to ~27!.
Each point corresponds to the mean velocity over 100 indepen-
dent particle configurations at a given concentration. Good accu-
racy for the sedimentation velocity is obtained for the wide range
of particle volume fraction simulated (0,f,0.20). At low vol-
ume fraction (f<0.03), however, the numerical results underpre-
dict Batchelor’s theory being the agreement within statistical un-
certainty. The small degree of scatter suggests that some of the
initial random configurations accessible through our simulations
were not perfectly statistically homogeneous as assumed by
Batchelor’s analysis. Actually, the dilute limit is difficult to study
through simulation, as very small effects must be compared and
issues of system size, the effect of periodic boundary conditions
must be considered. In this limit the motion is in essence a super-
position of the sedimentation velocity of the dilute periodic array
of images which scales like (f/N)1/3, with that for the random
suspension which isO(f) for a low-volume fraction. Mo and
Sangani@38# have calculated this difference in the velocity in-
duced at the center of a test particle in a periodic suspension and
a random suspension. Experimental results do not seem also to
give Batchelor’s coefficient, generally giving a value less than
6.55. The hindering of the settling observed is due to a back flow
outside the particle, which occurs since we imposed the condition
of no mean flow,̂ u&50. Our method can predict accurate veloc-
ity only for low to moderate volume fractions; for higher volume
fractions more moments are required to represent the particles
correctly.~See Figs. 5 and 6.!

5.3 Hindered Settling Function for Bidisperse Suspensions
We now present the calculated hindered settling velocities for a
bimodal size suspension of equidensity particles. At dilute condi-
tions the comparisons are made with the theoretical result of
Batchelor@4# which states that the mean velocity of a particle of
speciess in a suspension ofm distinct species is given by

f s~f!5
^U i

(s)&

U0
(s) ;11(

p51

m

Ssp~l,h!fp1O~f2!

~s51,2, . . . ,m! (29)

Fig. 3 Dimensionless settling velocity as a function of f1Õ3 for
a simple cubic arrangement of particles. The numerical results
for point-particle approximation „s… and including the finite
size of the particle „d… are shown in comparison with the low f
asymptotic solution of and Sangani-Acrivos †40‡ „solid curve ….

Fig. 4 Dimensionless settling velocity as a function of the
solid volume fraction. Simulations results „d… are shown in
comparison with the low f asymptotic result of Batchelor †3‡
„solid curve …, the Brady-Durlofsky †41‡ result „dashed curve …

and the Richardson-Zaki correlation †2‡ „dashed-dotted curve ….

962 Õ Vol. 124, DECEMBER 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where Ssp values are sedimentation coefficients which depend
upon the aspect ratiol5ap /as and the reduced density ratioh
5(rp2r f)/(rs2r f).

As another basis for comparison one adopts the correlation pro-
posed by Davis and Gecol@42#, valid for a wider range of total
particle volume fraction, given by the following expression:

f s5
^U i

(s)&

U0
5ls

2~12f!2SssS 11(
pÞs

~Ssp2Sss!fsD (30)

where the sedimentation coefficientsSsp assume the appropriate
values calculated by Batchelor and Wen@43#.

In Figure 7 it is shown the numerical results for the mean set-
tling velocity as a function of the total particle volume fraction in
comparison with those predicted by the Eqs.~29! and~30!. For the
sedimentation coefficients it was assumed the numerical values
S115S22525, S12529.81, S21524.29 provided by Batchelor
and Wen@43#. The simulations were performed under the imposi-
tion of equal volume fractions for both particle species. The nu-
merical results were obtained by averaging over 100 random and
independent instantaneous configurations. We see that they are in
good general agreement with the correlation,@43#, thus validating
the calculations of the average sedimentation by the present nu-
merical procedure.

5.4 Fluctuations in Sedimentation. Several cases were
studied. The particle concentration was varied through the range
0,f,0.10. Various different box sizes were studied, withl /a
ranging from around 25 to 350. The aspect ratio of the box was
kept constant ath/ l 53.

The horizontal fluctuations in the density of the suspension are
the origin of the large convection currents during the sedimenta-
tion. We investigate the magnitude of these fluctuations by con-
structing the Fourier amplitude for the lowest mode in the
x-direction of the number densitŷn'

2 &

^n'
2 &5(

j ,k
e2p i (xj 2xk)/ l , (31)

summing over the differences in thex-coordinates of the positions
of the particles.

We collect together in Fig. 6 the average of the horizontal den-
sity fluctuations, normalized byN, over the 100 realizations in
each of the 12 different cases studied. Although the results are
plotted as a function of the number of particles used in the differ-
ent cases, we see that the horizontal density fluctuations are es-
sentially constant, equal to the standard6AN statistical fluctua-
tion. The small degree of scatter around the unit we attribute to the
effect of the finite size of the box.

We measure the fluctuations in the velocities with the instanta-
neous variance

^U82~ t !&5
1

N21 (
i 51

N

~Ui~ t !2Ū~ t !!, (32)

Fig. 5 The settling velocity, nondimensionalized by U0 , as a
function of the total solid volume fraction for a bimodal size
suspension. Simulation results for small „h… and large „d… spe-
cies are shown in comparison with the low f asymptotic result
of Batchelor-Wen †43‡ „solid curve … and the Davis-Gecol corre-
lation †42‡ „dashed curve …. The simulations were performed
over 100 random and equally probable configurations. The sys-
tem is comprised of 1000 particles in a cubic periodic cell. The
results are for fsÄf lÄfÕ2 and l l ÕlsÄ2.

Fig. 6 Dimensionless horizontal density fluctuation obtained
over 100 random and independent configurations as a function
of the number of particles.

Fig. 7 Dimensionless velocity fluctuation for a monodisperse
suspension as a function of the system parameter Af l Õa. The
simulations were performed over 100 random and equally prob-
able configurations. The system is comprised of 300 particles
in the unit cell with periodic sides and impenetrable boundaries
perpendicular to gravity. The dashed lines are the linear fit: „a…
AŠU8¸

2
‹ÕU0Ä0.79Af l Õa; „b… AŠU8�

2
‹ÕU0Ä0.20Af l Õa.
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constructed for the vertical and two horizontal components of ve-
locity, the variances of the horizontal components then being av-

eraged to givêU i8
2
& and ^U'8

2
&.

In Figures 7~a! and 7~b! we examine the variation of the fluc-
tuations in the vertical and horizontal velocities. The system was
comprised of 300 particles in a unit cell with no flux boundary
perpendicular to gravity, but with side periodicity. The results for
the cases with different particle concentrationsf and box sizes
a/ l are plotted against the expected scaling parameter (f l /a)1/2.
We see that for low-volume fractions and small boxes both veloc-
ity fluctuations increase linearly with the square root of the box

size, with linear fits A^U i8
2
&50.79U0(f l /a)1/2 and A^U'8

2
&

50.20U0(f l /a)1/2. Thus in agreement with Caflisch and Luke@7#
and with the scaling argument presented here, we conclude that
when the particles are positioned randomly in a monodisperse
dilute suspension there are initially variances proportional to the
size of the box.

The saturation of the velocity fluctuations in Figs. 7~a! and 7~b!
are obtained for a volume fraction around 0.19 andl /a 18.7. It is
seen that velocity fluctuations parallel to gravity reach the con-
stant value of 0.85U0 for (f l /a)1/2 around 1.5, whereas the ve-
locity fluctuations perpendicular to gravity reach the value 0.20U0

for (f l /a)1/2 around 0.8. The velocity fluctuation of the vertical
velocity is comparable to the mean sedimentation velocity. This is
in good general agreement with the experiments@23# where the
fluctuations ranged between 25% and 50% of the mean in the
dilute suspensions. Our results are also in good general agreement
with the experiments of Nicolai et al.@25# and Guazzelli@6# who
found a relative fluctuation around 80% atf55%. The theoreti-

cal value of Koch and Shaqfeh@9# gives a slightly higher value of
A^U i8

2
&52.2U0 . The ratio in Fig. 7 of the vertical to horizontal

velocity fluctuations was found to be 4, indicating a strong anisot-
ropy. This is near to the experiment value of 2.5 found by Nicolai
et al. @25# and Guazzelli@6#, and near to the ratio of 3.5 found by
theory and numerical simulations,@14–16#.

We next present simulations results for a bidisperse suspension.
These simulations were performed for equal concentration of the
large and the small species (fs5f l5f/2) and for a diameter
ratio 2. Figures 8~a! and 8~b! display the results for vertical ve-
locity fluctuations for two species as a function of the system
parameter (f l /a)1/2. It is seen that the hydrodynamic interactions
of small particles with larger ones produces an increasing in their
velocity fluctuations of about 30% compared to the results shown
in Fig. 7~a!. It is apparent from these results that random bidis-
perse suspensions present a system size dependence at low-
volume fraction, just as shown above for the monodisperse case.
This leaves open the possibility that a dilute homogeneous poly-
disperse suspension could exhibit hydrodynamic screening.

5.5 Suspension Evolution. Microstructural change, that is
the variations in the relative arrangements of the particles, is an
important feature of a sedimentation process. The time evolution
of the system was analyzed over 10–20 realizations. The main
problem that we examine was to know how the initial configura-
tions of the particles evolve in time.

Typical evolutions for the cases of monodisperse and bimodal
suspensions simulated are displayed in Fig. 9. Figure 9~a! shows
one realization of the monodisperse case for a particle concentra-
tion f55%, a box size ofl /a520 and an aspect ratio of the box
h/ l 53; a simulation requiring 286 particles. The realization of the
bimodal suspension is shown in Fig. 9~b! for l /a520, a total
concentrationf50.05 (N5185), fs5f l50.025, and aspect ra-
tio l l /ls51.5 andh/ l 53. We show at five different times~from
0 to 60 a/U0! the positions of the particles projected onto the
vertical xz-plane. The first time in both cases is the initial con-
figuration with the particle distributed randomly inside the box. As
time progresses, a sediment accumulates on the lower impen-

Fig. 8 Dimensionless vertical velocity fluctuation for a bidis-
perse suspension as a function of the system parameter Af l Õa.
The simulations were performed over 100 random configura-
tions. The system is comprised of 300 particles in the unit cell
with periodic sides and impenetrable box. The results are for
fsÄf lÄfÕ2 and l l ÕlsÄ2. The dashed lines are the linear fit:
„a… AŠU8¸

2
‹ÕU0Ä1.400Af l Õa; „b… AŠU8�

2
‹ÕU0Ä1.345Af l Õa.

Fig. 9 Typical dynamic simulation of particle configuration at
different times during sedimentation: „a… monodisperse sedi-
mentation for aÕ lÄ0.05, h Õ lÄ3, NÄ286; fÄ0.05; „b… bimodal
sedimentation for fÄ0.05 „NÄ185…, fsÄf lÄ0.025 and aspect
ratio l l ÕlsÄ1.5; h Õ lÄ3.
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etrable boundary. Note that the impenetrable boundary is slippery
and not a no-slip rigid boundary, so that particles can be seen
moving along it. The descending upper interface between the sus-
pension and clear fluid above is diffuse and spreads slowly, so that
the nearby concentration of particles decreases in time.

For each case studied, dynamic simulations were made for 10
to 20 realizations with different initial configurations. Below we
give only averages over these realizations. Moreover in calculat-

ing the averages, we select the middle part of the suspension,
away from the sediment and the diffuse upper front.

Variations in number density can result from different boundary
conditions, such as when a finite height of suspension settles to-
ward an impenetrable plane boundary as considered in our simu-
lations. Figure 10 shows the time evolution of the horizontal den-
sity fluctuations, normalized byN, for two different combinations
of particle concentrations and box size. In each of the two differ-
ent cases studied, the horizontal density fluctuations are seen to
remain essentially constant up tot520a/U0 , approximately the
time to fall through the width of the boxl or one third the time to
fall the height of the boxh. We had expected that during such a
time the density fluctuations would drive a convection which
would turn the horizontal variations in density into vertical varia-
tions, and so the large velocity fluctuations would decay. Our
dynamic simulations show, however, that the convection does not
lead to a systematic decrease in the horizontal density fluctuations.
Further simulations,@11#, with a taller box,h/ l 54 and h/ l 55
found the same behavior. This result indicates that, even in the
case of considering no flux slip boundaries one would not expect
the probability density in the bulk of the suspension to be influ-
enced. Thus, the fluctuations seem to be always limited by the box
size in the dilute limit of a sedimenting suspension.

Corresponding to the lack of evolution of the density fluctua-
tions, vertical velocity fluctuations therefore remain proportional
to the size of the box, as in the parameterf l /a, and do not evolve
to some value which is independent of the size of the box. The
computer simulations therefore remain at variance with experi-
mental observations of fluctuations independent of the size of the
box. A possible explanation to the discrepancy between experi-
ment and theory is that side walls in the experiments may induce
large inhomogeneities as the suspension evolves in time. Further-
more, the experiments are always affected by polydispersity at
low-volume fraction. Polydispersity could decrease the correlation
time for a particle allowing it to fall through the interaction vol-
ume faster than it can sample the same volume by hydrodynamic
dispersion. This effect would be important to decrease diffusivity
as observed in the experiments.

The velocities of the particles fluctuate randomly in time, ap-
parently with a magnitude which does not evolve during the sedi-
mentation. The persistence in time of the velocity fluctuations is
investigated using the auto-correlation function of the velocity
fluctuations, which correlates the velocity at timet with itself at
various time delayst. This is constructed for the vertical and two
horizontal components. We shall report these auto-correlation
functions normalized by the variances, i.e.,

Ci~ t !5
^U8~ t !U8~ t1t!&

^U8~ t !U8~ t !&
(33)

and similarly for C'(t). Here the angle brackets denote a sum
over all particles, and an average over all configurations or real-
izations~i.e., an average over time in dynamic simulation!.

Figure 11 gives the auto-correlation function, nondimensional-
ized by the variance~correlation with zero time delay!, for the
horizontal and vertical velocity, both for our computer simulations
in the casef53%, a/ l 50.05 andh/ l 53 and for the experiments
of Nicolai et al.@25# in the casef55%, a/ l 50.01,h/ l 510, and
l /d52.5. There is good general agreement in which the velocities
lose correlation over a time ofO(10a/U0) and the horizontal
velocity de-correlates slightly faster.

The random motion of the sedimenting particles can be charac-
terized by a diffusion process with diffusivity calculated as the
integral over time of the velocity auto-correlation function

D5E
0

`

^U8~ t !U8~ t1t!&dt, (34)

constructed for the verticalD i and averaged over the two horizon-
tal directions forD' .

Fig. 10 Time evolution of the dimensionless horizontal den-
sity number fluctuations at different conditions of the simu-
lated system with the aspect ratio h Õ lÄ3. „h…: aÕ lÄ0.05; f
Ä0.03 „NÄ172…, „d…: aÕ lÄ0.06; fÄ0.02 „NÄ66….

Fig. 11 Normalized velocity fluctuation auto-correlation func-
tions parallel, C ¸ „h… and perpendicular, C� „n… to the gravity
direction. „a… Computer simulations for h Õ lÄ3, aÕ lÄ0.05, N
Ä114×fÄ0.02; „b… Computer simulations for h Õ lÄ3, aÕ l
Ä0.05, NÄ172×fÄ0.03. The error bars represent experimen-
tal data †25‡ with fÄ0.05, h Õ lÄ4, h ÕdÄ10 and d ÕaÉ100. The
dashed lines indicate the uncertainly range of the present com-
puter simulations.
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D5ezezD i1~ I2ezez!D' (35)

An important question is to examine whether this integral con-
verges at long times: if it does not, the diffusion process is anoma-
lous. The ratio of the diffusivities to the velocity variance gives
the integral time-correlationD/^U82&.

Figure 12 shows the time integral increasing to its asymptotic
value on the correlation time ofO(10a/U0). For the casef
53%, a/ l 50.05 andh/ l 53 we find a diffusivity in the direction
of gravity D i52aU0 . This value should be compared with the
experimental values of Ham and Homsy@23# increasing from
2aU0 at f52.5% to 6aU0 at f56%, and the experimental
value of Nicolai et al.@25# around 5aUs . Hydrodynamic screen-
ing theory givesD i50.52aU0 /f, i.e., the larger value 17aUs at
f53%, @9#.

Figure 13 shows our results for the self-diffusivity parallel to
gravity as a function of the scaling parameterf1/2( l /a)3/2. The
results for various particle concentrationsf and box sizesa/ l can
be approximated by the linear fitD i50.19aU0f1/2( l /a)3/2. While
the values of the diffusivity are comparable with those in labora-
tory experiments, a direct comparison is not possible because our
simulations depend on the size of the box and the laboratory ex-
periments do not.

The random fluctuations during sedimentation exhibit consider-
able anisotropy. We find thatD i /D''10 in all our simulations.
This value should be compared with a value around 5 in the ex-
periments of Nicolai et al.@25#, and a value around 25 in the
theory of Koch@14#. In fact, Koch’s theory shows that it is pos-
sible to reduce a degree of anisotropy from 100 to around 25 by
increasing the aspect ratio of the box fromh/ l 51 to h/ l 53. We
speculate, however, that this still high value results from the use

of a full periodic boundary condition in the vertical rather than our
no flux boundary perpendicular to gravity. Ladd@16# reported
numerical results of fluctuations and hydrodynamic dispersion in
sedimentation for a large homogeneous suspension using 32768
particles (f510%) at finite Reynolds number (Re50.45), based
on the width of the periodic cell. His results show an anisotropy in
velocity fluctuations about 3 that agree well with our numerical
results and experiments. However, the ratio of diffusivities equal
to 24 for h/ l 54 are larger than the result here and about five
times the experimental measurements.

Finally, we consider the results for velocity fluctuation fields
across the whole box atf50.03. The simulations show how the
random initial structure develops in time. Figure 14 displays typi-
cal velocity fluctuation fields taken during the dynamical simula-
tion at timet from 0 to 75a/U0 . The starting time (t50) corre-
sponds to a random suspension generated as described in Section
4.1. It is apparent that coherent large-scale structure that are order
of the size of the box forms~convective currents of particles! and
persists at later times. This larger scale vortex structure indicates
that the velocity fluctuations depend on the system size.

From the above discussion it seems as though that simulations
with a finite height of suspension approaching a no-flux boundary
with periodic boundary conditions in the horizontal direction is
the key to better capture the anisotropic nature of the particle
interactions and also to understand the difference between theory
and experiments on dilute sedimenting suspensions. This problem
can be better explored through simulations considering a box with
no-slip boundaries in order to investigate the effect of the con-
tainer walls on the dynamic of fluctuations as particles sediment.

6 Conclusions
In this paper we report direct numerical simulations of mono-

disperse and polydisperse suspensions of spherical particles sedi-
menting at low Reynolds number in a rectangular container with
side periodicity and impenetrable slip boundaries perpendicular to
gravity. Our method is applicable for static~not developing in
time! and dynamic simulations of suspensions at moderately vol-
ume fractions. The method of images was peculiarly adapted to
the solution of the problem of many interacting particles. The
results show the importance of including the effect of a no-flux
lower boundary for reducing the vertical-horizontal anisotropy of
particle diffusivities to realistic proportions.

We have compared our results of sedimentation velocity for
ordered and random~monodisperse and polydisperse! suspensions
with theory and experimental correlations and have generally
found good agreement for particle volume fraction ranging from 0
to 0.20. It is seen that the sedimentation velocities do not agree
particularly well in the very dilute limit due to the effect of peri-
odicity of our numerical system. For higher volume fractions a
good agreement of our sedimentation with experiments would re-
quire higher-order many-body multipole moments.

The results also show the evolution of the positions of the par-
ticles in a finite box. Our numerical computations have found
velocity fluctuations of monodisperse and polydisperse dilute sus-
pensions increasing in a predictable way with the system size. It is
seen that a saturation of fluctuations occurs only at volume frac-
tions larger than 10%. This result agrees with the scaling argu-
ments presented here, with theory and with large-scale lattice-
Boltzmann simulations of dilute suspensions. We conclude that
the sedimentation process observed in our simulations has been
dominated by convection currents~large structure motion! of the
size of the settling box, which is preserved in time. In contrast, the
experiments have found that large vortex structures diminishes in
size at larger times.

The degree of anisotropy in velocity fluctuations and hydrody-
namic self-diffusivities, both experimentally and in the present
simulations are independent of the system size. Our simulation
results for normalized autocorrelation functions are also in good
agreement with experiments at dilute limit.

Fig. 12 Dimensionless hydrodynamic self-diffusivities for h Õ l
Ä3, aÕ lÄ0.05, and fÄ3%. The dashed lines are the error bars.

Fig. 13 Vertical dimensionless hydrodynamic self-diffusivity
as a function of the scaling f1Õ2

„ l Õa…3Õ2. The dot line is the linear
fit D ¸Ä0.19aU0f1Õ2

„ l Õa…3Õ2.
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Since the experimental systems are never perfectly homoge-
neous and the actual particle distribution is unknown, the experi-
mental observations have not a definite answer for the physical
mechanism that renormalizes the rms fluctuations in a dilute sedi-
menting suspension. Certainly new numerical simulations includ-
ing the effects of the container walls would be important and
challenging to explain the experimental observations.

We hope that our simulations have given some new insights
into the study of fluctuations and dispersion in sedimentation and
may help to stimulate new developments in the future.
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Nomenclature

a 5 particle radius
C 5 velocity autocorrelation function

C1 , C2 5 numerical parameters~see Eq.~14!!
D 5 hydrodynamic self-diffusivity

D0 5 Stokes-Einstein diffusivity
d 5 box width
F 5 force acting on the particles
f l
a 5 artificial lubrication force acting on a particlea

fc
a 5 artificial contact force acting on a particlea

f (f) 5 hindered settling function

G 5 Ewald summed mobility tensor
g 5 gravitational force per unit mass
h 5 box height
I 5 unit second-rank tensor
J 5 kernel tensor

Ke 5 contact stiffness
kz 5 reciprocal lattice vector

l 5 box length
M 5 mobility tensor
m 5 number of species
N 5 number of particles within the unit cell
n 5 number density of particles

Pe 5 Péclet number
r 5 relative distance vector

Re 5 Reynolds number
S(l,h) 5 sedimentation coefficients

St 5 Stokes number
U0 5 Stokes velocity
U8 5 particle velocity fluctuation

u,v,w 5 fluid velocity components
V 5 cell volume
x 5 position vector

xg 5 physical lattice vector
x,y,z 5 space coordinates

Greek Symbols

g 5 cell index of the physical lattice
DE 5 energy variation
Dr 5 particle-fluid density difference

Fig. 14 Time developing of three-dimensional velocity-fluctuation fields
across the numerical box „20Ã20Ã60… during the sedimentation process of
monodisperse particles at fÄ0.05. The dimensionless time corresponds to
multiples of Stokes time aÕUo . Large-scale motions „i.e., convective currents …

dominate the sedimentation process with large swirl depending on the nu-
merical box.
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dt 5 time step
e 5 geometric parameter~see Eq.~21!!

«n 5 random vector
«0 5 interparticle gap for which the forcef l

a is cut off
«ab 5 virtual overlap between particlesa andb

z 5 cell index of the reciprocal lattice
h 5 reduced density ratio
k 5 Boltzmann constant
l 5 aspect ratio
m 5 fluid viscosity
j 5 convergence parameter
r 5 particle density

r f 5 fluid density
tc 5 correlation time
f 5 solid volume fraction

Superscripts

a, b 5 particle index
(ps) 5 physical space
(rs) 5 reciprocal space

(s), (p) 5 given species

Subscripts

i 5 parallel to gravity
' 5 perpendicular to gravity
s 5 small species

s, p 5 given species
l 5 large species
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Thermal Damping in Cavitating
Nozzle Flows
Recent investigations of bubbly cavitating nozzle flows using the polytropic law for the
partial gas pressure have shown flow instabilities that lead to flashing flow solutions.
Here, we investigate the stabilizing effect of thermal damping on these instabilities. For
this reason we consider the energy equation within the bubble, assumed to be composed
of vapor and gas, in the uniform pressure approximation with low vapor concentration.
The partial vapor pressure is fixed by the vapor saturation pressure corresponding to the
interface temperature, which is evaluated by assuming the thin boundary layer approxi-
mation within the liquid. Consequently, the partial gas pressure is evaluated by its rela-
tion to the heat flux through the interface in the uniform pressure approximation. The
model is then coupled to the steady-state cavitating nozzle flow equations replacing the
polytropic law for the partial gas pressure. The instabilities found in steady cavitating
nozzle flows are seen to be stabilized by thermal damping with or without the occurrence
of bubbly shock waves.@DOI: 10.1115/1.1511163#

1 Introduction
It is well known that the pressure within the bubble affects

bubble dynamics significantly. Thermal effects arising mainly
from thermal conduction through the bubble and the surrounding
liquid produce temperature changes that can have significant ef-
fects on the total pressurepb8 , written as the sum of the partial gas
pressurepg8 and partial vapor pressurepv8 , as has been demon-
strated in various studies~e.g., see Chapman and Plesset@1#, Nig-
matulin et al.@2#, Miksis and Ting@3#, Prosperetti et al.@4#, Pros-
peretti @5#, Brennen@6#, Hao and Prosperetti@7#, and references
therein!. Matsumoto and Takemura@8# and Takemura and Matsu-
moto @9# have also numerically simulated single bubble motion
subjected to a stepwise pressure signal by integrating directly the
full conservation equations for mass, momentum, and energy in-
side and outside the bubble. Their results showed that heat con-
ductivity and diffusion affect the bubble motion significantly. For
a spherical vapor-gas bubble of radiusR8 whose partial gas pres-
sure ispg08 at some reference sizeR08 and temperatureT08 ~usually
taken as those values at the mechanical and thermal equilibrium of
the bubble with the surrounding liquid!, the total bubble pressure
at the bubble wall, can be written as

pb85pv8~TR8 !1pg08 S TR8

T08
D S R08

R8
D 3

(1)

whereTR8 is the bubble wall temperature provided that there is no
appreciable mass transfer of the gas to or from the liquid~e.g., see
Brennen@6#!. It is now clear that the bubble wall pressurepb8 and
consequently, bubble dynamics can be strongly influenced by the
variation of the bubble wall temperatureTR8 . The determination of
the bubble wall temperatureTR8 requires solving heat diffusion
equations within the bubble and in the surrounding liquid. This
problem is usually bypassed by assuming a polytropic law for the
gas so that Eq.~1! becomes

pb85pv8~TR8 !1pg08 S R08

R8
D 3k

(2)

where k51 for isothermal andk5gg for isentropic expansion
~compression! of the gas. Recent investigations~e.g., see Nig-

matulin et al.@2#, Prosperetti@5#! have shown that the use of the
polytropic law ~2! for the gas leads to considerable disagreement
between theory and experiment in nonlinear oscillations of
bubbles~for an extension to vapor bubbles, see Hao and Prosper-
etti @7#!. It has also been recently demonstrated by Wang and
Brennen@10# and by Delale et al.@11# that the use of Eq.~2! in
steady-state cavitating nozzle flows can result in instabilities in
the flow. Here we abandon Eq.~2! and, instead, concentrate on
Eq. ~1! to see the effect of thermal damping on bubble dynamics,
especially on the instabilities mentioned.

For most cavitating flows, the bubble wall temperature deviates
from the cold liquid temperatureT08 only slightly so that we can
write

TR85T08~11q! (3)

where the functioniqi!1. Substitution of Eq.~3! into Eq. ~1!
then yields

pb85pv8~T08!1pg08 S R08

R8
D 3

1qFrv8L8~T08!1pg08 S R08

R8
D 3 G1 . . .

(4)

whererv8 is the saturated vapor density atT08 and L8(T08) is the
latent heat of vaporization atT08 . Equation~4! shows that, when
the normalized radiusR8/R08 is of O(1) during the growth period,
the isothermal approximation holds. However, when the radius
grows to appreciable size, as observed in the flashing flow insta-
bilities of Wang and Brennen@10# and of Delale et al.@11#, the
contribution from theO(q) term can become comparable to the
first term so that deviations from isothermal behavior can be sub-
stantial. In such a case the effect of thermal damping on bubble
dynamics cannot be neglected and the functionq has to be deter-
mined from the solution of the thermal diffusion equations within
the bubble as well as in the surrounding liquid.

In this investigation we consider the heat diffusion equation for
a spherical vapor-gas bubble in the uniform pressure approxima-
tion and in the limit of low vapor concentration and near-
isothermal flow, following the work of Prosperetti@5# for a gas
bubble. The bubble wall temperature is evaluated by the Plessset-
Zwick @12# solution of the heat equation in the surrounding liquid
in the thin boundary layer approximation. Consequently, a general
expression for the variation of the bubble pressure, that depends
on the variation of the bubble wall temperature and its coupling to
bubble dynamics, is obtained. The resulting equation is then
coupled to the quasi-one-dimensional nozzle flow equations to
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determine the effect of thermal damping. Results obtained for
quasi-one-dimensional steady-state cavitating nozzle flows show
that the flashing flow instabilities discussed by Wang and Brennen
@10# and by Delale et al.@11# can be stabilized with or without the
occurrence of bubbly shock waves by thermal damping.

2 The Energy Balance for a Spherical Vapor-Gas
Bubble

In this section we discuss the energy balance between a spheri-
cal vapor-gas bubble and its surrounding liquid. For this reason it
is essential to discuss the processes of energy transfer between the
spherical bubble and the surrounding liquid.

2.1 Thermal Conduction Through a Spherical Vapor-Gas
Bubble. We consider a spherical bubble with radiusR8 with
content taken as a homogeneous mixture of a gas and a vapor at
the same temperatureT8. We neglect the inter-diffusion between
the gas and vapor. The energy equation can then be written as~see
Prosperetti@5#!

gbpb8

~gb21!T8

dT8

dt8
2

dpb8

dt8
5

1

r 82

]

]r 8 S r 82 lb8
]T8

]r 8 D (5)

where the isentropic exponentgb of the gas-vapor mixture is de-
fined by

gb5
~12cg!@gvRv8/~gv21!#1cg@ggRg8/~gg21!#

~12cg!@Rv8/~gv21!#1cg@Rg8/~gg21!#
(6)

with gv , Rv8 and gg , Rg8 denoting, respectively, the isentropic
exponents and the gas constants of the vapor and of the gas and
with cg5rg8/rb8 denoting the ratio of the gas density to the bubble
density. In Eq.~5!, pb8 is the total pressure of the bubble~assumed
to be uniform throughout the bubble!, lb8 is the thermal conduc-
tivity of the bubble,t8 denotes the time,r 8 is the radial coordinate
and the operatord/dt85]/]t81w8]/]r 8 ~wherew8 is the mag-
nitude of the radial velocity! is the total derivative. Utilizing the
thermal equation of state of the bubble for ideal gas mixture with
gas constantRb85(12cg)Rv81cgRg8 together with the continuity
equation, we can write Eq.~5! in the form

dpb8

dt8
1gbpb8

1

r 82

]

]r 8
~r 82w8!5

~gb21!

r 82

]

]r 8 F r 82lb8~T8!
]T8

]r 8 G .
(7)

Equation~7!, in the uniform pressure approximation, can be inte-
grated once with respect tor 8 to yield

w85
1

gbpb8
F ~gb21!lb8~T8!

]T8

]r 8
2

1

3
r 8

dpb8

dt8
G . (8)

Assuming that the gas content of the gas-vapor mixture is con-
stant, we have

w8ur 85R85
dR8

dt8
2

mv9

rb8
(9)

wheremv9 is the interfacial mass flux of the vapor, determined, in
principle, from kinetic theory~e.g., see Nigmatulin et al.@2#!.
However, for this case, the value of the accommodation coeffi-
cient to be used presents a serious difficulty in determining the
value ofmv9 . Here we determinemv9 using an approximate overall
energy balance. We consider the interfacial condition

mv9L85l lR8 S ]Tl8

]r 8
D

r 85R8

2lbR8 S ]T8

]r 8 D
r 85R8

(10)

whereL8 is the latent heat of vaporization,l lR8 and lbR8 are, re-
spectively, the thermal conductivity of the liquid and that of the
gas-vapor mixture at the bubble wall, andTl8 denotes the tempera-

ture field within the liquid. Assuming that the thermal conductiv-
ity of the liquid is much greater than that of the gas-vapor mix-
ture, the phase change at the bubble wall can be thought to be
dominated by the liquid side. If, in addition, the vapor density
distribution within the bubble is approximated by some average
value, e.g., by its saturated value at the bubble wall temperature,
the interfacial condition~10! can be approximated as~e.g., see
Brennen@6# and Hao and Prosperetti@7#!

dR8

dt8
5

l lR8

rv8L8
S ]Tl8

]r 8
D

r 85R8

(11)

so that we havemv9'rv8(dR8/dt8). Using this result, we evaluate
Eq. ~8! at r 85R8 and utilize Eq.~9! to arrive at

dpb8

dt8
5

3

R8 F ~gb21!lbR8
]T8

]r 8
U

r 85R8

2gbcgpb8
dR8

dt8 G (12)

where lbR8 5lb8(TR8 ) with TR8 denoting the temperature of the
bubble wall. For a gas bubble (cg51), Eq.~12! reduces precisely
to that derived by Prosperetti@5#. Following Nigmatulin et al.@2#
and Prosperetti@5#, we introduce the scaled variabley:

y5
r 8

R8~ t8!
. (13)

Equations~5!, ~8!, and~12!, then, reduce to

gbpb8

~gb21!T8 H ]T8

]t8
1

~gb21!

gbpb8R82 Flb8~T8!
]T8

]y
2lbR8 y

]T8

]y U
y51

2
gb~12cg!

~gb21!
ypb8R8

dR8

dt8 G ]T8

]y J
5

dpb8

dt8
1

1

R82y2

]

]y Fy2lb8~T8!
]T8

]y G (14)

and

dpb8

dt8
5

3

R8 F ~gb21!
lbR8

R8

]T8

]y U
y51

2gbcgpb8
dR8

dt8 G (15)

for 0,y,1. These equations that couple the microscopic energy
equation for the bubble temperatureT8 to the total bubble pres-
surepb8 and to the bubble radiusR8 were first derived by Prosper-
etti @5# for a gas bubble (cg51). Here, it is shown that they can
also be utilized for cavitating flows, except for the very last stages
of bubble collapse where the uniform pressure approximation
breaks down. This result also assumes thatgb and Rb8 can be
treated as constants~although the composition of the vapor and of
the gas can vary significantly during growth and collapse,gb and
Rb8 vary at a much slower rate so that they can be approximated
by some average values!.

2.2 The Energy Equation in the Surrounding Liquid.
The bubble wall temperatureTR8 may, in some cases, be signifi-
cantly different from the ambient liquid temperatureT08 far away
from the bubble. In such a case the consideration of the energy
equation in the surrounding liquid is essential. IfTl8(r 8,t8) is the
temperature in the liquid phase at a distancer 8 (R8<r 8,`) from
the bubble center at timet8, the energy equation in the liquid can
be written as

]Tl8

]t8
1

dR8

dt8 S R8

r 8 D 2 ]Tl8

]r 8
5

a l8

r 82

]

]r 8
S r 82

]Tl8

]r 8
D (16)

wherea l8 is the thermal diffusivity of the liquid~e.g., see Brennen
@6#!. Assuming that the radial motion is sufficiently small so that
translational motion can be neglected, the temperature difference
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T082TR8 can be obtained by the solution of Eq.~16! given by
Plesset and Zwick@12# together with Eq.~11! ~for details see
Brennen@6#!

T082TR85
L8rv8

cpl8 r l8
S 1

pa l8
D 1/2E

0

t8 R82~j8!~dR8/dj8!

F E
j8

t8
R84~t8!dt8G1/2dj8. (17)

Equation ~17! relates bubble dynamics to the bubble wall tem-
peratureTR8 .

2.3 Normalized Equations for Energy Balance of a
Spherical Vapor-Gas Bubble. We now introduce the normal-
ized variables

pb5
pb8

p08
, T5

T8

T08
, lb5

lb8

lbR8
, R5

R8

R08
and t5

t8

Q8
(18)

whereR08 is a typical equilibrium radius,p08 is the corresponding
mixture pressure,T08 is the liquid temperature at infinity,lbR8
5lb8(TR8 ) is the thermal conductivity of the bubble evaluated at
TR8 andQ8 is a characteristic time for bubble dynamics. With this
normalization Eqs.~14! and ~15! assume the form

pb

T H ]T

]t
1

D

pbR2 Flb~T!
]T

]y
2y

]T

]yU
y51

2
~12cg!

D
ypbR

dR

dt G ]T

]y J
5

~gb21!

gb

dpb

dt
1

D

R2y2

]

]y Fy2lb~T!
]T

]y G (19)

and

d

dt
@R3gbpb#53gbR(3gb22)FD

]T

]y U
y51

1~12cg!pbR
dR

dt G
(20)

whereD is the square of the ratio of the penetration lengthl p8 to
the equilibrium radiusR08 ~e.g., see Prosperetti@5#! and it is de-
fined by

D5S l p8

R08
D 2

5
~gb21!lbR8 T08Q8

gbp08R08
2 . (21)

In Eq. ~21! l p8 is given by

l p85S lbR8 Q8

r08cpb8 D 1/2

(22)

wherer085p08/(Rb8T08) is the density of the bubble at equilibrium.
Equations~19! and~20! provide two equations for the normalized
temperatureT and the bubble pressurepb coupled to the equations
of nonlinear spherical bubble dynamics.

It is worthwhile mentioning that the neglect of gas diffusion at
the bubble wall and the assumption of uniform pressure distribu-
tion throughout the bubble impose the restriction

E
0

R8
rg8r 82dr85

1

3
R08

3rg08 , (23)

where rg08 is the gas density at equilibrium. Equation~23!, in
normalized form, becomes

pg E
0

1 y2

T
dy5

pg0

3R3 (24)

wherepg (5pg8/p08) denotes the normalized partial gas pressure
inside the bubble andpg0 is its equilibrium value.

It is also interesting to note that the termD]T/]yuy51 in Eq.
~20! plays a decisive role in the nature of expansion or compres-
sion of the gas during the growth or collapse of the bubble. In

particular, two cases frequently employed during collapse and
growth periods of the bubble are easily identified as limiting
cases:

~i! The adiabatic limit (D]T/]yuy51→0 andcg→1).
This limit is frequently assumed at the collapse stages of the

bubble where most of the vapor has already condensed. Therefore,
in this limit Eq. ~20! integrates to the adiabatic compression law

pg5
pg0

R3gg
. (25)

~ii ! The isothermal limit (T51 so thatD→`, ]T/]yuy51→0).
In this limit it follows from the normalized Eq.~24! that

pb5pv1pg5pv1
pg0

R3 . (26)

3 Model Equations for Thermal Damping in Quasi-
One-Dimensional Cavitating Nozzle Flows

In this section we consider the model equations for unsteady
quasi-one-dimensional nozzle flow equations together with the
classical Rayleigh-Plesset equation for bubble dynamics. These
equations in normalized form are

r512b, (27)

A
]r

]t
1

]

]x
~ruA!50, (28)

r
du

dt
52

]p

]x
, (29)

R3S 12b

b D5
12b0
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5k0

3 (30)

and

pb2p

L2 5R
d2R

dt2
1

3

2 S dR

dt D
2

1
S0

L2R
1

4

L2~Re!R

dR

dt
(31)

with

S05
2S8

p08R08
, Re5

H08Ap08/r l8

n l8
, (32)

whereb denotes the void fraction,S8 is the surface tension at the
liquid temperatureT08 , r l8 is the liquid density at the liquid tem-
peratureT08 , n l8 is the corresponding liquid kinematic viscosity,
H08 is the nozzle inlet height as shown in Fig. 1 andL5R08/H08 is
the ratio of bubble to nozzle size. The normalized mixture pres-
surep, mixture densityr, mixture flow speedu and nozzle areaA
entering the system of Eqs.~27!–~32! are defined by

p5
p8

p08
, r5

r8

r l8
512b, pb5

pb8

p08
, u5

u8

Ap08/r l8
and

A5
A8

A08
(33)

with A08 denoting the inlet nozzle area. The nozzle axial coordi-
nate and the time are normalized as

x5
x8

H08
and t5

t8

Q8
5

t8Ap08/r l8

H08
. (34)

The normalized total derivative isd/dt5]/]t1u]/]x. The sys-
tem of Eqs.~27!–~31! can now be supplemented by Eqs.~19! and
~20!, with the total derivatived/dt replacing the partial derivative
]/]t in Eq. ~19!, constitute a complete system forp, r, b, u, T,
pb , and R for a given normalized areaA(x) with appropriate
initial and boundary conditions. The solution of such a problem is
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difficult, even if Eqs.~19! and ~20! are replaced by a polytropic
law for the gas. Therefore, approximations leading to certain sim-
plifications, especially of Eqs.~19! and~20!, are needed. A major
difficulty in the coupling of Eqs.~19! ~with ]T/]t replaced by
dT/dt) and ~20! to the rest of the flow equations is the
y-dependence of the term (1/T)(dT/dt). However, a close exami-
nation shows that the term (1/T)(dT/dt) is a slowly varying func-
tion of y for 0,y,1 ~except at violent collapse stages where the
model is no longer valid! and can, therefore, be taken to be inde-
pendent ofy, as will be justified below. By applying the operator
d/dt to Eq. ~24! together with the assumption that (1/T)(dT/dt)
is independent ofy, it can be shown that

pg5
f ~yR!T

R3 (35)

where f (yR) is some function of the non-dimensional radial co-
ordinateyR, normalized with respect to the equilibrium radius
R08 . This relation, in the uniform pressure approximation, sug-
gests thatT is a product of a function ofx and t by a function of
yR alone (1/f (yR) in this case!, showing consistency with the
ideal gas law. Equation~35! also shows that the normalized gas
density rg is proportional tof (yR)/R3. To proceed further, we
need to determine the temperature dependence of the normalized
thermal conductivitylb(T). The thermal conductivity of a gas is
proportional to the square root of the temperature according to the
kinetic theory of gases~e.g., see Leighton@13#! so that the nor-
malized thermal conductivity of the bubble can be taken aslb
5AT. Utilizing this relation together with the assumption that
(1/T)(dT/dt) is independent ofy, the energy Eq.~19! in cavitat-
ing nozzle flows assumes the form

]2T

]y22
1

2T S ]T

]y D 2

1F2

y
1

y~c1d!

T3/2 G ]T

]y

2
1

T1/2 @3~11gbKg!~c1d!2b#50 (36)

whereb, c, andd are defined by

b~x,t !5
~11Kg!

DR(3gb22)

d

dt
@pvR3gb#, (37)

c~x,t !5
]T

]y U
y51

, (38)

and

d~x,t !5
~12cg!

D
pbR

dR

dt
(39)

with Kg given by

Kg5
~12cg!

cg

Rv8

Rg8
. (40)

The partial differential Eq.~36! does not contain the time deriva-
tive and depends on the timet and positionx implicitly through
the functionsb(x,t), c(x,t) and d(x,t). It can, therefore, be

treated as an ordinary differential equation iny at any fixedx and
t. Furthermore, the temperature field at any field point (x,t)
should satisfy the boundary conditions

]T

]yU
y50

50 (41)

and

T~y51,x,t !5TR~x,t !5 12L E
0

t R2~x,j!~dR/dj!dj

F E
j

t

R4~x,t!dtG1/2 (42)

where we have used the normalized form of the Plesset-Zwick
formula @12# for TR . It is understood that the integration in Eq.
~42! is carried out following bubble motion whereL is defined by

L5S L8

T08cpl8 D S rv8

r l8
D R08

~pQ8a l8!1/2. (43)

All properties entering Eq.~43! can be evaluated at the tempera-
tureT08 since, for most cavitating flows,TR8 andT08 differ, at most,
by a few degrees.

We now introduce the transformation

Z5AT (44)

so that the boundary value problem to be solved becomes

Z2
]2Z

]y2 1F2Z2

y
1

y~c1d!

Z G ]Z

]y
2

1

2
@3~11gbKg!~c1d!2b#50

(45)

subject to

]Z

]yU
y50

50 (46)

and

Z~y51,x,t !5Z0~x,t !5F 12L E
0

t R2~x,j!~dR/dj!

F E
j

t

R4~x,t!dtG1/2djG 1/2

(47)

whereb(x,t) andd(x,t) are, respectively, given by Eqs.~37! and
~39! and wherec(x,t) is now given by

c~x,t !52F 12L E
0

t R2~x,j!@dR/dj#dj

F E
j

t

R4~x,t!dtG1/2 G 1/2 ]Z

]y U
y51

. (48)

Note that Eq.~45! contains the boundary value]Z/]yuy51 through
c. We can now seek an analytical solution to Eq.~45! in the form

Z~y,x,t !5Z0~x,t !1(
k51

`

ak~b,c,d,Z0!~y21!k (49)

Fig. 1 Investigated nozzle geometry
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for 0,y,1 whereZ0(x,t) is given by Eq.~47! and the coeffi-
cientsak are, in general, functions ofb, c, d, andZ0 . It follows
from Eq. ~48! that

c52Z0a1~b,c,d,Z0!. (50)

Also the boundary condition~46! yields

(
k51

`

~21!kkak~b,c,d,Z0!50, (51)

from which it follows that the relation to be solved forc is

c52Z0(
k52

`

~21!kkak~b,c,d,Z0!. (52)

The solution of Eq.~52! for c requires, in principle, determining
all of the coefficientsak . Given these coefficients, Eq.~52! could
be solved forc as a function ofb, d, andZ0 to yield

c~x,t !5F @b~x,t !,d~x,t !,Z0~x,t !# (53)

so that Eq.~20! together with Eq.~53! replaces the previously
employed polytropic law for the partial gas pressure~e.g., see
Wang and Brennen@10# and Delale et al.@11#!. In general, the
solution of Eq.~52! for c is a difficult task; however, it is possible
to simplify the dependence of Eq.~53! in some limiting cases of
practical importance. For most cavitating flows, we haveuZ021u
!1 and D, given by Eq.~21!, is much greater than unity (D
@1), as will be demonstrated in Section 4. In this limit, the de-
pendence ofc on both b and d in Eq. ~53! can be suppressed
(b→0 andd→0) sinceD@1. Therefore, Eq.~53! reduces to

c5H~Z0! (54)

with H(1)50. In such a case, we can approximate Eq.~54! by
expandingH in the vicinity of Z051 to linear order and then use
the Plesset-Zwick formula, Eq.~47!, for (Z021) to arrive at

c~x,t !52kL E
0

t R2~x,j!~dR/dj!dj

F E
j

t

R4~x,t!dtG1/2 (55)

wherek is defined by

k5
1

2

]H
]Z0

U
Z051

. (56)

It can be shown thatk>0 by the second law of thermodynamics.
The exact value ofk is difficult to estimate. Here it will be treated
as a parameter. The polytropic law employed previously for the
partial gas pressure in this limit can now be replaced by the law

dpb

dt
1S 3gbcg

R

dR

dt D pb5
3gb

R2 Dc (57)

for the bubble pressurepb wherec is given by Eq.~55! andcg is
close to unity. It is worthwhile to mention that Eq.~57! reduces to
that derived by Watanabe and Prosperetti@14# for a gas bubble
(cg51). In this casec, defined by Eq.~38!, cannot be evaluated
by Eq.~55! since the boundary conditions~9! and~10! differ for a
gas bubble and for a vapor-gas bubble, the difference arising from
the presence of phase change in the latter case. For a vapor-gas
bubble there is a discontinuity in the heat flux at the liquid/vapor-
gas bubble interface, given by Eq.~10!, in contrast to the case of
a gas bubble where the heat flux at the interface is continuous. By
assuming that the interfacial temperature gradients in both the
liquid and bubble sides are of the same order of magnitude for a
vapor-gas bubble, the heat transfer, in this case, can be thought to
be dominated by the liquid side due to much higher thermal con-
ductivity of the liquid. On the contrary, for a gas bubble (mv950
andcg51), the interfacial condition~10! implies the continuity of
the heat flux at the liquid-gas bubble interface, which shows that

the temperature gradients at the bubble wall in the gas side are
much higher than those in the liquid side due to higher thermal
conductivity of the liquid. Consequently, the bubble wall tempera-
ture can, to a good approximation, be replaced by the cold liquid
temperature for a gas bubble, an assumption used by Prosperetti
@5# and verified by Prosperetti et al.@4# and by Kamath et al.@15#.
It should, therefore, be expected that the near-isothermal solution
of this work for a vapor-gas bubble and that of Prosperetti@5# for
a gas bubble are also different. It should also be mentioned that
Eq. ~57! can be used more widely, except for the very last stages
of the collapse periods of violent cavitating bubbles where the
uniform pressure approximation breaks down~e.g., see Prosperetti
et al. @4#!. In such a case, one would require the full solutions of
the thermal diffusion equation for the evaluation ofc, Eq. ~53!,
~in contrast to the limiting near-isothermal solution discussed
above wherec is approximated by Eq.~55!! together with the
mass diffusion equations for the evaluation of the gas concentra-
tion cg ~in contrast to the low vapor concentration limit discussed
above wherecg is close to unity!. If simple models ofc andcg ,
that can be validated by comparison with the results of full nu-
merical simulations of bubble motion~similar to those of Matsu-
moto and Takemura@8#! during the growth and collapse periods of
vapor-gas bubbles, can be constructed, the application of Eq.~57!
can then be largely extended. With these remarks in mind, here we
limit the application of Eq.~57! to near-isothermal flow in the
limit of low vapor concentration. Equations~55! and~57! together
with Eqs. ~27!–~31! can now be taken as model equations for
quasi-one-dimensional cavitating nozzle flows with thermal
damping.

4 Some Applications and Results
In this section we investigate the effects of thermal damping on

some cavitating nozzle flow solutions by the model developed
above. In particular, we consider the effect of thermal damping on
the flashing flow instabilities encountered in the quasi-one-
dimensional steady-state nozzle flow solutions obtained numeri-
cally by Wang and Brennen@10# ~or by solving a third-order dy-
namical system of scaled variables for the flow speed as
demonstrated by Delale et al.@11#!; therefore, we restrict the Eqs.
~27!–~31! to steady-state. As for the nozzle, we use the slender
nozzle given in Fig. 1~also employed by Delale et al.! with origin
(x50) at the throat and the inlet atx52 l . For the steady-state
situation, Eq.~57!, in the limit of low vapor concentration, inte-
grates to

pb~x!5F11S013gbDE
2 l

x @R~j!# (3gb22)

u~j!
c~j!djGY @R~x!#3gb

(58)

wherec, given by Eq.~55!, takes the form

c~x!52kLE
2 l

x R2~j!~dR/dj!dj

H E
j

x

@R4~z!/u~z!#dzJ 1/2 (59)

with k>0. Equations~58! and~59! can now be implemented into
the steady-state solution of Delale et al.@11#, replacing the poly-
tropic law for the gas pressure. The resulting system form an
integro-differential system for the initial value problem. The solu-
tion of this system is carried iteratively starting with initial values
obtained from a nearby solution.

We consider a bubbly cavitating flow of water-vapor/air
bubbles in water at 20°C, with a constant partial vapor pressure
pv850.0234 bar, a constant surface tension coefficientS857.1
31022 N/m and a constant water viscositym l851023 kg/m-s.
The flow is through the converging-diverging nozzle shown in
Fig. 1. The initial cavitation numbers0 , the initial void fraction
b0 and the initial flow speedu08 are fixed at the valuess050.5,
b051025 and u08510 m/s, respectively. The initial radiusR08 is
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varied between 10mm and 35mm. When the partial gas pressure
is approximated by the polytropic law leaving out the thermal
damping effects on the flow field, it has already been demon-
strated by Delale et al.@11# that, under the conditions stated
above, stable steady-state cavitating nozzle flow solutions in the
quasi-one-dimensional approximation are possible if the initial ra-
dius R08 is below some critical value~for the conditions stated
above, this critical value is 10.22mm!. When the initial radius
exceeds this critical value, flashing flow instabilities, similar to
those obtained by Wang and Brennen@10#, are observed. Pres-
ently, we replace the polytropic law for the gas pressure by Eqs.
~58! and ~59! to include the damping effect of heat conduction

through the bubble, that has already been demonstrated to be quite
significant for oscillating gas bubbles~Nigmatulin et al.@2# and
Prosperetti@5#!.

Figures 2 and 3 show the thermal damping effect on the pres-
sure coefficientCp and on the normalized radiusR for the case
with initial radiusR08510 mm. In this case a stable configuration
is possible even with the polytropic law for the gas pressure. The
value of the undetermined parameterk is varied to quantify the
relative effect of thermal damping. The pressure coefficient for
this case seems to be unaffected by thermal damping whereas
thermal damping seems to reduce the normalized maximum ra-
dius, the reduction being greater when the coefficientk assumes
higher values~e.g., fork50.5). Figures 4 and 5 show how flash-

Fig. 2 Distributions of the pressure coefficient Cp without „k
Ä0.0… and with thermal damping „kÄ0.05 and kÄ0.5… along the
nozzle axis with initial void fraction b0Ä10À5, initial cavitation
number s0Ä0.5, inlet flow speed u 08Ä10 mÕs, and initial radius
R08Ä10 mm „corresponding to DÄ61,841… for the steady-state
solution of water vapor-air bubbles in water at 20°C „note that
no difference can be seen between the pressure coefficients in
the scale used in the figure …

Fig. 3 Distributions of the normalized radius R without „k
Ä0.0… and with thermal damping „kÄ0.05 and kÄ0.5… along the
nozzle axis under conditions specified in Fig. 2

Fig. 4 Distributions of the pressure coefficient Cp without „k
Ä0.0… and with thermal damping „kÄ0.07 and kÄ0.7… along the
nozzle axis with initial void fraction b0Ä10À5, initial cavitation
number s0Ä0.5, inlet flow speed u 08Ä10 mÕs, and initial radius
R08Ä20 mm „corresponding to DÄ13,289… for the steady-state
solution of water vapor-air bubbles in water at 20°C

Fig. 5 Distributions of the normalized radius R without „k
Ä0.0… and with thermal damping „kÄ0.07 and kÄ0.7… along the
nozzle axis under conditions specified in Fig. 4
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ing flow instabilities obtained whenR08520 mm with other nozzle
inlet conditions held fixed, can be stabilized by the present ther-
mal damping model. Figure 4 shows the stabilizing effect on the
pressure coefficientCp as the thermal damping parameterk is
increased from zero~corresponding to a flashing flow instability!
to 0.7. Figure 5 demonstrates the effect on the normalized radius
distribution along the nozzle axis. When the initial radiusR08 is
increased even further~e.g., to a value ofR08533 mm) with the
same inlet conditions, the flashing flow instabilities become even
stronger with much steeper gradients along the nozzle axis. In this
case greater values of the thermal damping parameterk are re-

quired to stabilize the flow. Figure 6 demonstrates the thermal
damping effect on the pressure coefficientCp , in a steady-state
bubbly shock solution, as the parameterk is increased from zero
to 0.5. The increase in the pressure coefficient can be identified as
an increase in the strength of the bubbly shock. The corresponding
normalized bubble radius distributionR(x) along the nozzle axis
is plotted in Fig. 7. Finally, a stability diagramk versusR08 , with
the same inlet conditions, is shown in Fig. 8. The increase in the
thermal damping coefficient towards a bubbly shock solution is
observed as the initial radiusR08 is increased, corresponding to an
intensified flashing flow instability resulting from the use of the
polytropic law for the gas pressure. On the other hand, sincek is
independent of the nozzle inlet conditions~see Eq.~56!!, the same
value ofk should be assumed for all stable steady-state solutions.
Therefore, the unique value ofk that would yield stable steady-
state solutions is needed. Preston et al.@16#, under similar condi-
tions, have recently demonstrated that bubbly shock solutions are
unsteady. If this is so, the value ofk that leads to stable steady-
state solutions can roughly be taken as that value beyond which
flashing flow solutions can only be stabilized by the occurrence of
bubbly shock waves~this corresponds to a rough estimate ofk
50.0820.09 in the stability diagram of Fig. 8!. A better estimate
of k may be obtained from the stability analysis of steady-state
solutions of cavitating nozzle flows from the unsteady equations
of motion in the quasi-one-dimensional approximation.

5 Concluding Remarks
The effect of thermal damping on cavitating flows is investi-

gated by consideration of the heat diffusion equations within the
bubble and in the surrounding liquid. In the latter case, the
Plesset-Zwick formula@12# in the thin boundary layer approxima-
tion is utilized. In particular an approximate expression for the
total bubble pressure is derived in the uniform pressure approxi-
mation replacing the polytropic law. This expression is coupled to
the quasi-one-dimensional steady-state cavitating nozzle flow
equations. The effects of thermal damping in such flows are then

Fig. 6 Distributions of the pressure coefficient Cp without „k
Ä0.0… and with thermal damping „kÄ0.32 and kÄ0.5…, corre-
sponding to bubbly shock solutions, along the nozzle axis with
initial void fraction b0Ä10À5, initial cavitation number s0

Ä0.5, inlet flow speed u 08Ä10 mÕs and initial radius R08
Ä33 mm „corresponding to DÄ4458… for the steady-state solu-
tion of water vapor-air bubbles in water at 20°C

Fig. 7 Distributions of the normalized radius R without „k
Ä0.0… and with thermal damping „kÄ0.32 and kÄ0.5…, corre-
sponding to bubbly shock solutions, along the nozzle axis un-
der conditions specified in Fig. 6

Fig. 8 Stability diagram of the parameter k versus the initial
radius R08 under nozzle inlet conditions with initial void fraction
b0Ä10À5, initial cavitation number s0Ä0.5 and inlet flow speed
u 08Ä10 mÕs for the steady-state solution of water vapor-air
bubbles in water at 20 0C
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demonstrated for both stable and unstable solutions of Wang and
Brennen@10# and of Delale et al.@11# using the polytropic gas
law. The instabilities observed in quasi-steady nozzle flows are
seen to be stabilized by the present thermal damping model with
or without the occurrence of bubbly shock waves.

The present thermal damping model utilizes the near-isothermal
and uniform bubble pressure approximations in the limit of low
vapor concentration for stabilizing the flashing flow instabilities
found in the study of steady-state cavitating nozzle flows during
bubble growth. The application of the model to other phenomena
with bubble dynamics, such as high-temperature boiling flows,
requires reconsideration and further improvements on the assump-
tions made~uniform pressure distribution inside the bubble, the
near-isothermal flow approximation, low vapor concentration, ne-
glected inter-diffusion between the vapor and the gas!.
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Nomenclature

A 5 cross-sectional area of the nozzle
Cp 5 pressure coefficient
D 5 dimensionless parameter defined by Eq.~21! charac-

terizing the square of the penetration length to the
equilibrium radius

H08 5 inlet height of nozzle
Kg 5 weighted ratio of vapor gas constant to noncondens-

able gas constant
L 5 ratio of bubble to nozzle size

L8 5 latent heat of vaporization
R 5 bubble radius

Re 5 Reynolds number
R 5 gas constant
S0 5 normalized surface tension
T 5 temperature
Z 5 scaled dimensionless temperature
b 5 dimensionless function defined by Eq.~37!
c 5 dimensionless temperature gradient of the gas mix-

ture at the bubble wall, defined by Eq.~38!
cg 5 mass concentration of the gas in the vapor/gas bubble
cpl8 5 the specific heat of the liquid

d 5 dimensionless function defined by Eq.~39!
l p8 5 penetration length defined by Eq.~22!

mv9 5 vapor mass flux at the bubble wall
p 5 pressure

r 8 5 dimensional radial coordinate
t 5 time
u 5 flow speed

w8 5 magnitude of radial velocity due to bubble dynamics

x 5 nozzle axial coordinate
y 5 dimensionless radial coordinate

Greek

Q8 5 dimensional characteristic time scale
a l8 5 thermal diffusivity of the liquid
b 5 void fraction
g 5 isentropic exponent
k 5 parameter defined by Eq.~56!
l 5 thermal conductivity

n l8 5 kinematic viscosity of the liquid
r 5 density

s0 5 inlet cavitation number

Subscripts

0 5 equilibrium or nozzle inlet value
R 5 evaluated at the bubble wall
b 5 bubble
g 5 gas
l 5 liquid
v 5 vapor

Superscripts

8 5 signifies dimensional quantity~otherwise dimension-
less!

k 5 polytropic index
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Mach Number Influence on
Reduced-Order Models of Inviscid
Potential Flows in
Turbomachinery
An unsteady inviscid flow through a cascade of oscillating airfoils is investigated. An
inviscid nonlinear subsonic and transonic model is used to compute the steady flow
solution. Then a small amplitude motion of the airfoils about their steady flow configu-
ration is considered. The unsteady flow is linearized about the nonlinear steady response
based on the observation that in many practical cases the unsteadiness in the flow has a
substantially smaller magnitude than the steady component. Several reduced-order modal
models are constructed in the frequency domain using the proper orthogonal decomposi-
tion technique. The dependency of the required number of aerodynamic modes in a
reduced-order model on the far-field upstream Mach number is investigated. It is shown
that the transonic reduced-order models require a larger number of modes than the
subsonic models for a similar geometry, range of reduced frequencies and interblade
phase angles. The increased number of modes may be due to the increased Mach number
per se, or the presence of the strong spatial gradients in the region of the shock. These two
possible causes are investigated. Also, the geometry of the cascade is shown to influence
strongly the shape of the aerodynamic modes, but only weakly the required dimension of
the reduced-order models.@DOI: 10.1115/1.1511165#

1 Introduction
Time histories and frequency domain responses of extremely

large dimensional aerodynamic systems, with up to 104– 106

degrees-of-freedom may be computed due to the recent advances
in computer technology. However, the computation time required
to solve such systems becomes prohibitive especially when nu-
merous parametric analyses are required. Moreover, such compu-
tation of fluid dynamics~CFD! codes are practically impossible to
use in control applications, because most control schemes are de-
signed for relatively small systems, with less than 100 degrees-of-
freedom. Therefore, the direct applicability of the most common
control strategies to standard CFD models is significantly limited.
Fortunately, many control strategies are robust with respect to
model uncertainties and thus may be successful although they are
designed and tested using approximate models. These observa-
tions lead to the conclusion that reduced-order models, which
have a much smaller number of degrees-of-freedom, are desired.
Generally a reduced-order model is a simplified model which has
a much smaller number of degrees-of-freedom than the original
model, but, nevertheless, captures the dynamics of the original
model with acceptable accuracy. The tradeoff between accuracy
and complexity is determined by each particular application.

Early attempts to construct reduced-order models for fluid dy-
namic analysis and design used physical insights to reduce the
complexity of the model~@1–3#!. Although useful, these tech-
niques are usually applicable to a rather limited range of param-
eter variations, such as small values of the reduced frequency, and
small static and dynamic loads. To overcome this limitation, more
recent analyses have used more systematically derived reduced-
order models. Among these techniques are Pade´ approximants of
the unsteady aerodynamic transfer functions~@4–6#!, eigenmode

summation techniques in either time or frequency domains~@7,8#!,
and proper orthogonal decomposition also known as Karhunen-
Loève method ~@9–13#!. Another interesting paper which dis-
cusses the proper orthogonal decomposition method and an alter-
native approach based upon Arnoldi vectors was recently
presented also~@14#!. Reduced-order models of flows over iso-
lated airfoils have been developed in the time domain. Recently,
however, the frequency domain has been more extensively ana-
lyzed for both unsteady analyses and reduced-order model con-
struction. The inviscid full potential equation and the eigenmode
summation technique in the frequency domain have been used to
construct reduced-order models for flows in turbomachinery
cascades.

A reduced-order model has by definition a smaller number of
degrees-of-freedom than the original CFD model and is typically
several orders of magnitude smaller. Ideally, the reduced-order
modeling provides accuracy comparable to the original CFD
model, but at much less computational cost when used in an
aeroelastic analysis. The tradeoff between accuracy and complex-
ity of the model is dependent on the particular application, of
course. Nevertheless, using reduced-order modeling in prelimi-
nary design and optimization analyses is very promising espe-
cially when active control of an aeroelastic system is concerned
because most current control strategies require relatively small
system models, with 100 degrees-of-freedom or less.

In this paper we apply the proper orthogonal decomposition
technique in the frequency domain and construct reduced-order
models of unsteady flows in a turbomachinery cascade. The
proper orthogonal decomposition is a technique that allows one to
obtain good approximations of the spatial modes of vibration and
the dynamics of a system using the response of the system to
various excitations. The proper orthogonal decomposition tech-
nique was first used by experimentalists to analyze test data, and it
has recently been applied to a wider variety of problems, such as
wind loads calculations and coherent structure identification in
turbulent flows. The main assumption made in the proper orthogo-
nal decomposition technique is that the dynamics of large systems
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is in fact low dimensional, i.e., the inertial manifold of the dynam-
ics is low dimensional. For a large category of problems, this
assumption holds because in many cases most of the energy of the
system being analyzed is contained in the dynamics of a few
modes.

In this paper we investigate the problem of a forced excited
flow. An inviscid nonlinear model of subsonic and transonic flows
in a cascade of turbomachinery airfoils is used to compute the
steady flow. Then, a small amplitude motion of the airfoils about
their steady flow configuration is considered. The unsteady flow is
linearized about the nonlinear steady response based on the obser-
vation that in many cases the unsteadiness in the flow has a sub-
stantially smaller magnitude than the steady component. Next, a
frequency domain model is constructed and validated by showing
that it provides similar results when compared to previous com-
putational data presented in the literature. A cascade of airfoils
based upon a slightly modified generic compressor cascade geom-
etry established as benchmark test case configuration at the Sixth
International Symposium on Unsteady Aerodynamics and
Aeroelasticity of Turbomachines is numerically investigated for
several cases, i.e., subsonic cases where the upwind far-field Mach
number is 0.50, 0.55, and 0.70, and a transonic case where the
Mach number is 0.80.

For the subsonic case, three reduced-order models are con-
structed in the frequency domain using the proper orthogonal de-
composition technique. A reduced-order model with only 10
degrees-of-freedom is shown to predict accurately the unsteady
response over a wide range of reduced frequencies when com-
pared to a full model with approximately 5000 degrees-of-
freedom. Similarly, a second reduced-order model with only 10
degrees-of-freedom is shown to predict accurately the unsteady
response over a full spectrum of interblade phase angles and a
fixed reduced frequency. Finally, a third-model model with 35
degrees-of-freedom is shown to model accurately the flow dynam-
ics over a full spectrum of interblade phase angles and a wide
range of reduced frequencies. These results are obtained for up-
wind far-field Mach numbers of 0.50, 0.55, 0.70.

For the transonic case, three reduced-order model are con-
structed in the frequency domain using the proper orthogonal de-
composition technique also. A reduced-order model with only 15
degrees-of-freedom is shown to model accurately the unsteady
response over a wide range of reduced frequencies when com-
pared to a full model with approximately 17,500 degrees-of-
freedom. Similarly, a second reduced-order model with 15
degrees-of-freedom also, is shown to predict accurately the un-
steady response over a full spectrum of interblade phase angles
and a fixed reduced frequency. Finally, a third-model model with
50 degrees-of-freedom is shown to model accurately the flow dy-
namics over a full spectrum of interblade phase angles and a wide
range of reduced frequencies. These results are obtained for an
upwind far-field Mach number of 0.80.

Finally, the dependency of the required number of aerodynamic
modes in a reduced-order model on some of the most significant
parameters of the system is investigated. Specifically the far-field
upstream Mach number and geometrical parameters such as the
solidity and airfoil profile are considered. It has been observed
that the transonic reduced-order models require a larger number of
modes than the subsonic reduced-order models for a similar ge-
ometry, range of reduced frequencies and interblade phase angles.
The increased number of modes may be due to the increased
Mach number per se, or the presence of the strong spatial gradi-
ents in the region of the shock. These two possible causes are
investigated. Also, the geometry of the cascade is shown to influ-
ence strongly the shape of the proper orthogonal decomposition
modes, but only weakly the required dimension of the reduced-
order model.

2 Unsteady Flow Model
The flow model used is based on a variational formulation of

the full potential equation. The nonlinear full potential equations

is linearized about the steady nonuniform flow and a small pertur-
bation model is obtained. Distinct from classical linearized poten-
tial models, the full potential equation is not linearized about a
uniform steady state. Rather, thenonlinear steady state is com-
puted first and then the linearization is done around the steady
solution. The full potential equation for an isentropic, irrotational
flow ~@15#! may be expressed as

¹2f5
1

c2 F]2f

]t2 12¹f•¹
]f

]t
1

1

2
¹f•¹~¹f!2G , (1)

wherec is the local speed of sound given by

c25cT
22~g21!F]f

]t
1

1

2
~¹f!2G , (2)

with cT denoting the stagnation or total speed of sound. Using
Bernoulli’s equation, one may obtain also the expression of the
flow density as a function of the potential and its derivatives.
Also, one may compute the expression of the density as a function
of stagnation quantities, i.e., the density and pressure at a point in
the flow field where¹f and]f/]t are both zero. From the isen-
tropic relation one may obtain the expression of the local pressure
as a function of the potential.

The steady flow is solved first. Then the unsteady flow is com-
puted based on the small disturbance assumption. Making this
assumption, one considers the unsteady component of the flow to
be much smaller than the steady component. The potentialf may,
therefore, be decomposed into a large steady componentF and a
much smaller unsteady componentf̃. The potential may then be
expressed asf(t)5F1f̃(t), wheret is the time,f̃!F, and all
three variablesf, F, andf̃ depend on the spatial location in the
flow.

One assumes also that the unsteadiness in the flow is also har-
monically varying in time. This analysis is a natural choice gen-
erated by the small perturbation assumption. A scale analysis of
the differential equations that govern the flow motion quickly
shows that the unsteadiness in the flow is governed by a differen-
tial equation that is linear in time and has constant coefficients in
time. Nevertheless, these coefficients depend on the steady solu-
tion and, therefore, on the spatial location. Since the unsteadiness
in the flow is, to first order, governed by a linear constant coeffi-
cient differential equation in time, the unsteadiness may be de-
composed into a Fourier series. The unsteady response is the sum
of the responses computed for each excitation frequency sepa-
rately. In the turbomachinery problem investigated, the unsteadi-
ness in the flow is due to the pitch motion of the airfoils of the
cascade. The motion of the airfoils is the excitation.

The unsteady small magnitude potentialf̃ is, therefore, ana-
lyzed in the frequency domain. The potentialf̃ is assumed to vary
periodically in time, i.e.,

f̃~ t !5(
v

w~v!ej vt, (3)

where j is the imaginary unitA21, v are the frequencies of the
excitation, andw is the response of the unsteady flow at frequency
v. The variablew is a Fourier coefficient and, in general, it is
complex. However, from the theory of linear differential equa-
tions, one may readily conclude that the real part ofw is the
response that is in phase with the corresponding excitation. Simi-
larly, the imaginary part ofw is the out-of-phase component of the
response.

The motion of the airfoils is modeled by a moving physical
domain, and a fixed computational domain. The physical domain
of the flow varies in time. However, the computation domain may
be considered constant by using an unsteady coordinate transfor-
mation. The coordinate transformation defines the physical do-
main at each instant in time as a function of the computational
domain and the imposed motion of the airfoils. The unsteady co-
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ordinate transformation eliminates the need to extrapolate the po-
tential to apply the airfoil boundary conditions or to compute the
unsteady pressure.

There are five types of flow boundary conditions that apply to
the computational domain~@16#!. As shown in Fig. 1, at the inlet,
periodic boundary conditions are used in the circumferential di-
rection. The Kutta condition is implemented and the wake is con-
sidered an impermeable surface while the continuity of pressure is
enforced along this boundary. On the airfoil surfaces, the no-
penetration condition is enforced. The far-field boundary condi-
tions are of two types: Dirichlet and Neumann. The Dirichlet
boundary condition enforces given values to the potential at the
vertical upstream computational boundary. The values of the po-
tential in the upstream far-field are computed so that they corre-
spond to a given vertical flow velocity. The Neumann boundary
conditions enforce a certain flux of fluid to exit the computation
domain.

There are five types of boundary conditions for the linearized
unsteady flow also. They are periodic, wake, upstream far-field,
downstream far-field, and airfoil surface boundary conditions.
Similar to the steady case, the unsteady wake is also considered an
impermeable surface. The continuity of unsteady pressure is en-
forced along this boundary. On the airfoil surfaces, the unsteady
no-penetration condition is enforced. The far-field boundary con-
ditions are exact nonreflecting boundary conditions~@17#! for the
linearized unsteady problem. They are based on an eigenanalysis
of the wave propagation in the far-field. The eigenanalysis identi-
fies which waves propagate/grow towards the inside of the do-
main and which propagate/grow towards the outside. The waves
that propagate towards the inside of the domain are eliminated to
ensure the nonreflectivity of the boundaries. The boundary condi-
tions are, therefore, numerically exactly nonreflective. Their de-
scription is dependent on the discretization.

3 Model Reduction Technique
The model reduction technique used is proper orthogonal de-

composition. Very well suited for linear systems, the proper or-
thogonal decomposition is also applicable to nonlinear systems.
The applicability of the proper orthogonal decomposition method
is limited because the modes~also referred to as coherent struc-
tures! strongly exchange energy and therefore the required num-
ber of modes that may capture most of the energy of the dynamics
increases rapidly. This phenomenon occurs because the dynamics
of the system is not low dimensional~@18#!. Typical cases of sys-
tems where the simple proper orthogonal decomposition tech-

nique is not successful are the systems that exhibit spatio-
temporal chaos. However, in such situations, the proper
orthogonal decomposition may also be used in a local fashion
~@19–21#!.

In the context of aeroelasticity, the proper orthogonal decom-
position method was first introduced in the time domain~@13#!,
and the frequency domain~@12,22#!. In this paper, we used the
‘‘snapshot’’ POD method. In this approach the response of the
linearized system withL degrees-of-freedom is obtained and
stored in a solution vectorFi , for a set ofN excitation frequen-
ciesv i . Please note thatFi , does not refer to the steady potential
F. Rather,Fi is a vector containing the unsteady solutionw at all
computational nodes. Each solution vectorFi hasL complex en-
tries and, therefore, contains both the phase and the magnitude of
the response. A matrixR of sizeL3N is formed such that itsi th
column is the solution vectorFi for each i<N. A correlation
matrix is then assembled of the formC5R* R, where the super-
script * indicate the Hermitian operator.

The eigenvalues of the correlation matrix are then obtained by
solving an eigenvalue problem of dimensionN3N, i.e., Cvi
5l ivi , wherei varies between 1 andN, l i is an eigenvalue of the
correlation matrix, andvi has dimensionN. Among theN eigen-
values obtained, the most significant eigenmodes contain most of
the energy of the fluid motion and correspond to the largest eigen-
values. One organizes the eigenvectorsvi and eigenvaluesl i in
descending order, from most important to least important, i.e.,
largest to smallest eigenvalue.

The most significantn eigenvectors~@22#! are then organized in
a matrix V of size N3n such that thei th column of V is the
vectorvi , with i 51, . . . ,n. The equations of motion and the state
space vector are then projected onto the space spanned by these
vectors and a reduced-order model is obtained. Formally one may
express the equations of motion as

v2A2F1vA1F1A0F5b, (4)

where b is the inhomogeneous forcing vector arising from the
motion of the airfoil andF is a vector containing the unsteady
solutionw at all computational nodes. The component of the so-
lution F in the subspaceS, is denotedFS . Then,F is approxi-
mated byFA which may be expressed as

F'FA5PFS . (5)

Multiplying Eq. ~4! to the left by the Hermitian of the matrixP
5RV ~which is normalized so that( j Pi j

2 51), and considering

Fig. 1 Left: Cascade geometry and computational domain of the flow. Right: Eigenvalues of the correlation
matrix computed using 50 snapshots obtained varying k only; and 10 Ã10 snapshots obtained varying both k
and s.
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only the solutions contained in the subspaceS spanned by the
columns ofP, one obtains a reduced order system of sizen, i.e.,

v2P* A2PFS1vP* A1PFS1P* A0PFS5P* b. (6)

Equation~6! represents the reduced-order model and it is solved
for the n unknownsFS . The Mach number appears in the matri-
cesA0,1,2 whereass appears explicitly in the right-hand side vec-
tor b. The unknownsFS are expanded back into the original
physical space using Eq.~5!. An important feature of the proper
orthogonal decomposition technique is that the eigenvalues of the
reduced-order model in Eq.~6! are good approximations to the
eigenvalues of the full system. A more detailed mathematical
treatment of the proper orthogonal decomposition method in the
time and frequency domains may be found in@22–24#.

4 Numerical Results
In this section, numerical results are presented. The flow

through the Tenth Standard Configuration is investigated. This is a
generic compressor cascade geometry established as the bench-
mark test case configuration at the Sixth International Symposium
on Unsteady Aerodynamics and Aeroelasticity of Turbomachines.
The airfoil geometry used in the Tenth Standard Configuration is
the NACA-5506 configuration~@25#!. In addition, the stagger
angle is 45 deg, the inflow angleQ is 55 deg, the solidity is 1, the
inflow Mach number is 0.70, and the Reynolds number based on
chord and upstream total flow velocity is 105. In our investiga-
tions we analyze an inviscid flow at various Mach numbers.

4.1 Subsonic Model Validation. The coefficient of lift for
an isolated flat plate in inviscid flow may be shown to be 2p. To
compare our code with this analytic result, we computed the flow
in a two-dimensional cascade of NACA-5506 airfoils, same as the
Tenth Standard Configuration, but with a solidity of 5. First, we
computed the steady flow for an upstream far-field Mach number
of 0.1, and zero inflow and stagger angles. We then calculated the
unsteady flow for a pitching motion about the mid-chord point of
the airfoils at zero frequency. We obtained a coefficient of liftCL
of 1.00332p. This value of the coefficient of lift obtained with
our code is within 0.3% margin of the value 2p. In the following
we perform more precise self-consistency tests, and compare our
code with other computational data presented in the literature.

First, we investigate the self-consistency of the linearization.
Shown in Fig. 2 is the coefficient of pressure obtained for an
upstream far-field Mach number of 0.50. A special unsteady solu-
tion is compared to a solution obtained by finite differences. To
obtain the finite difference solution, we first computed the steady
response for two stagger angles of values 44.99 deg and 45.01

deg, while the inflow angle and the solidity were maintained con-
stant. Then, the two steady solutions were subtracted and divided
by 0.02 deg. The result is an approximation for the unsteady re-
sponse of the model in the limit of zero frequency. To obtain the
special unsteady solution, we first saved the changes in the grid
node location between the two steady solutions computed. These
changes were loaded into the unsteady code as prescribed grid
motion and unique source of unsteadiness. Finally, the unsteady
code was used to obtain the special unsteady solution. A very
good agreement between the unsteady solution and the finite dif-
ference solution is observed in Fig. 2. The coefficient of pressure
CP plotted in Fig. 2 is defined byCP5(p2p`)/(0.5rv`

2 ), where
v` is the total velocity upstream in the far-field.

Next, we investigate the sensitivity of the solution to grid re-
finement. First, we investigate the steady calculations. Shown in
Fig. 3 is the steady coefficient of pressure when the upstream
far-field Mach number is 0.50. A very good agreement between
the solutions obtained on the fine and the coarse grid is observed.
The coarse grid is composed of 150330 grid nodes, while the fine
grid contains 300350 grid nodes.

Next, we investigate the grid sensitivity of the unsteady calcu-
lations. Shown in Fig. 2 is the real part of the coefficient of pres-
sure computed for a pitching motion of the airfoils about their
mid-chord point. The interblade phase angles is 90 deg and the
reduced frequencyk5vb/v` is 0.5, whereb is the semi-chord
andv` is the total velocity upstream in the far-field. Similar to the
steady calculations presented above, the coarse grid is composed
of 150330 grid nodes, while the fine grid contains 300350 grid
nodes. A very good agreement between the results obtained with
the coarse and the fine grid is observed, indicating the insensitiv-
ity of the unsteady results with respect to grid refinement.

Next, we compare our results with the results obtained using a
very similar computer code presented by Hall@16#. Shown in Fig.
3 is the steady coefficient of pressure for an upstream far-field
Mach number of 0.50. A very good agreement between the results
obtained with the two codes is observed. Comparisons with other
models and experimental data along with a more detailed discus-
sion of the strengths and weaknesses of the small perturbation
potential model are given in@16#.

Finally, we compare our unsteady results with the results pre-
sented by Hall@16#. Shown in Fig. 3 is the real part of the un-
steady coefficient of pressure for a pitching motion of the airfoils
about their mid-chord at a reduced frequencyk of 0.5 and an
interblade phase angles of 90 deg. A very good agreement be-
tween the results obtained with the two codes is observed. A simi-
lar agreement may be observed for the imaginary part of the un-
steady coefficient of pressure, which was not shown here.

Fig. 2 Unsteady coefficient of pressure CP for a pitching motion about the mid-chord. Left: zero frequency and
zero interblade phase angle. Right: real „in-phase … part of CP at reduced frequency k of 0.5 and interblade phase
angle s of 90 deg.
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4.2 Transonic Model Validation. A typical two-
dimensional cascade of NACA-5506 airfoils is investigated. The
solidity of the cascade is 1, the stagger angle is 45 deg, the up-
stream far-field Mach number is 0.80, and the inflow angleQ is
55 deg. For the unsteady calculations, a pitching motion of the
airfoils about the mid-chord point is assumed.

First, we perform a self-consistency test of the linearization.
Shown in Fig. 4 is the coefficient of pressure obtained for an
upstream far-field Mach number of 0.80. A special unsteady solu-
tion is compared to a solution obtained by finite differences using
a similar technique as done for the subsonic case. To obtain the
finite difference solution, we first computed the steady response
for two stagger angles of values 44.99 deg and 45.01 deg, while
the inflow angle and the solidity were maintained constant. Then,
we used the two steady solutions to compute an approximate un-
steady response of the model at zero frequency. To obtain the
special unsteady solution, we first computed the changes in the
grid node location for the two steady solutions. These changes
were loaded into the unsteady code as prescribed grid motion and
unique source of unsteadiness. Finally, the unsteady code was
used to obtain the special unsteady solution. A very good agree-
ment between the unsteady solution and the finite difference so-
lution is observed in Fig. 4.

Next, we investigate the sensitivity of the transonic solution to
grid refinement. The steady solution is first considered. Shown in
Fig. 4 are the coefficients of pressure obtained using a coarse and
a fine grid. The coarse grid has 200340 nodes, while the fine grid
is composed of 300350 modes. A good agreement between the
two solutions is observed, demonstrating the insensitivity of the
steady transonic solution to grid refinement.

Next, we investigate the sensitivity of the unsteady transonic
solution to grid refinement. Shown in Fig. 4 is the real part of the
coefficient of pressure computed for a pitching motion of the air-

foils about their mid-chord point. The interblade phase angles is
90 deg and the reduced frequencyk is 0.5. Similar to the steady
calculation presented above, the coarse grid is composed of 200
340 grid nodes, while the fine grid contains 300350 grid nodes.
A good agreement between the results obtained with the coarse
and the fine grid is observed.

4.3 Subsonic Reduced-Order Modeling. A typical two-
dimensional cascade of NACA-5506 airfoils is investigated. The
solidity of the cascade is 1, the stagger angle is 45 deg, the up-
stream far-field Mach number is 0.50, and the inflow angleQ is
55 deg. For the unsteady calculations, a pitching motion of the
airfoils about the mid-chord point is assumed. The flow is dis-
cretized using a grid with 150330 nodes.

Four reduced-order models have been constructed. The first
model was obtained using a proper orthogonal decomposition
technique applied to a set of 36 snapshots obtained varying the
interblade phase angles between2180 deg and 180 deg while
the reduced frequencyk was maintained constant of value 0.5.
This model has 10 degrees-of-freedom. The second model was
constructed using a proper orthogonal decomposition technique
applied to a set of 51 snapshots obtained varying the reduced
frequencyk between 0.0 and 2.0 while the interblade phase angle
s was maintained constant of value 90 deg. This model has 10
degrees-of-freedom. The third and the fourth models have 35 and
25 degrees of freedom, respectively. These models were con-
structed using 11318 snapshots obtained varyings between
2180 deg and 180 deg andk between 0.0 and 2.0.

First, we investigate the performance of the reduced-order mod-
els for various interblade phase angles. Shown in Fig. 5 are the
results obtained for a pitching motion of the airfoils with reduced
frequencyk of 0.5. The reduced-order models with 10 and 35
degrees-of-freedom, are shown to model accurately the response

Fig. 3 Coefficient of pressure CP for an upstream far-field Mach number of 0.50. Left: comparison of steady flows. Center:
comparison of steady flows obtained using a fine and a coarse grid. Right: real „in-phase … part of the unsteady flow at reduced
frequency k of 0.5.

Fig. 4 Coefficient of pressure CP for an upstream far-field Mach number of 0.80. Left: steady flow computed on a fine and a
coarse grid. Center: unsteady flow for a pitching motion about the mid-chord at zero frequency and zero interblade phase angle.
Right: real „in-phase … part of the unsteady flow for a pitching motion about the mid-chord at reduced frequency k of 0.5 and
interblade phase angle s of 90 deg.
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computed using the full model. When only 25 modes are used to
model the flow using snapshots obtained varying bothk ands, the
model is accurate over a limited spectrum of interblade phase
angles. When additional number of ten modes are included, the
reduced-order model is accurate over the entire spectrum of inter-
blade phase angles. Only the real part of the coefficient of lift is
shown. The performance of the reduced-order models in comput-
ing the imaginary part of the coefficient of lift is similar and not
shown here. The coefficient of lift is defined byCL

5*0
cCP(j)dj/(ca), wherec is the chord anda is the amplitude

of the pitch motion. When a plunging motion is investigated, the
anglea is replaced by the nondimensional pitch amplitude.

Next, we investigate the performance of the reduced-order
models for various reduced frequencies. Shown in Fig. 5 are the
responses of the full model and the reduced-order models for an
interblade phase angle of 90 deg. The reduced-order models with
10 and 25 degrees-of-freedom are shown to model accurately the
dynamics of the full model. The additional ten modes or degrees-
of-freedom used for large interblade phase angles, are not required
here because the interblade phase angle of 90 deg falls into the
region of interblade phase angles where the model with 25
degrees-of-freedom models accurately the full system, as shown
in Fig. 5.

The reduced-order model obtained using snapshots computed at
an upstream far-field Mach number of 0.50 may be used to con-

struct reduced-order models of flows with other Mach numbers.
However, the accuracy of the reduced-order models is dependent
on the value ofM for which aerodynamic forces are computed.
Figure 6 and Fig. 7 show that the 35-mode model referred to in
Fig. 5 and computed using snapshots at a Mach number of 0.50
predicts well the trends in the dynamics of the system at a Mach
number of 0.35, e.g., increasing or decreasing magnitudes of the
coefficient of lift, cuton or cutoff frequencies. Also, this reduced-
order model provides reasonable quantitative results at a Mach
number of 0.55 although it does not give as accurate results as the
same model gives at a Mach number of 0.50. Moreover, the aero-
dynamic forces computed for values ofM closer and closer to
0.50 are more and more accurate when the reduced-order model
obtained using snapshots computed for a Mach number of 0.50 is
used. Figure 8 and Fig. 9 show that the results predicted at a Mach
number of 0.50 by the 35-mode model are very accurate when
compared to the results obtained using the full model.

There are two possible factors which determine the number of
modes required for constructing a reduced-order model. One fac-
tor is the intrinsic dimension of the inertial manifold of the flow
dynamics. Another factor is the accuracy of the modal approxima-
tions obtained using the proper orthogonal decomposition tech-
nique. To separate these two factors, we computed a separate set
of 700 snapshots obtained at 35320 distinct values of the inter-
blade phase angles ~varying from 2180 deg to 180 deg! and

Fig. 5 Real „in-phase … part of the unsteady coefficient of lift CL for a pitching motion about the mid-chord. Left:
reduced frequency k of 0.5. Right: interblade phase angle s of 90 deg.

Fig. 6 Unsteady coefficient of lift CL for a pitching motion about the mid-chord, upstream far-field Mach number
of 0.35 and interblade phase angle s of 90 deg. Snapshots are computed at a Mach number of 0.50. Left: real
part. Right: imaginary part.
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reduced frequencyk ~varying from 0 to 2!. The reduced-order
models and full model are compared at various Mach numbers.
However, the snapshots are computed at one Mach number only.
Thus, the reduced-order models obtained using snapshots com-
puted for flows with the same Mach number as the flows com-
puted using the full model are referred to asexact. For example,
Fig. 8 and Fig. 9 show the coefficient of lift~at a Mach number of
0.55! predicted by the full model, a 35-mode reduced-order model
obtained using snapshots computed at a Mach number of 0.50 and
two reduced-order models obtained using snapshots referred to as
exactas they are computed at a Mach number of 0.55.

Figure 8 and Fig. 9 show that the accuracy of the modes ob-
tained using a proper orthogonal decomposition technique is a
critical factor. The 25-mode model~based on snapshots computed
at a Mach number of 0.55! is shown to predict the flow dynamics
as well as the 35-mode model~based on snapshots computes at a
Mach number of 0.55! in Fig. 5 although the former uses 10
modes less. The reason for the lower number of modes is the
accuracy of the proper orthogonal decomposition modes used for
reduction. The 25-mode model was constructed using 700 snap-
shots whereas the 35-mode model was constructed using only 100
snapshots, obtained for 10310 parameter values fors between
2180 deg and 180 deg andk between 0.0 and 2.0. Thus, a 25-

mode model based on 700 snapshots was shown to be more ac-
curate than a 35-mode model based on 100 snapshots, which in
turn is more accurate than a 25-mode model based on 100 snap-
shots. Also, the 20-mode model shown in Fig. 8 and Fig. 9 pre-
dicts accurately the flow response to an oscillation of the airfoils
at a reduced frequencyk of 1. Nevertheless, this model does not
predict accurately the dynamics at other frequencies~as shown in
Fig. 8! suggesting that the factor limiting the further decrease
below 25 of the required number of modes of the reduced-order
models is the dimension of the inertial manifold of the flow dy-
namics.

The trends in the required number of modes in a reduced-order
model are observed at other values of the Mach number as well.
Figure 10 and Fig. 11 show that a 25-mode model~based on
snapshots computed at a Mach number of 0.70! is accurate for an
upstream far-field Mach number of 0.7 while a 20-mode model
~based on snapshots computed at a Mach number of 0.70! predicts
trends and has limited accuracy as shown in Fig. 10, for example.

4.4 Transonic Reduced-Order Modeling. The upstream
far-field Mach number considered is 0.80, and the inflow angleQ

Fig. 7 Unsteady coefficient of lift CL for a pitching motion about the mid-chord, upstream far-field Mach number of 0.35 and
reduced frequency k of 1. Snapshots are computed at a Mach number of 0.50. Left: real part. Right: imaginary part.

Fig. 8 Unsteady coefficient of lift CL for a pitching motion about the mid-chord, upstream far-field Mach number of 0.55 and
interblade phase angle s of 90 deg. Snapshots are computed at a Mach number of 0.50 and 0.55. Left: real part. Right:
imaginary part.

Journal of Fluids Engineering DECEMBER 2002, Vol. 124 Õ 983

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



is 55 deg. For the unsteady calculations, a pitching motion of the
airfoils about the mid-chord point is assumed. The flow is dis-
cretized using a grid with 300340 nodes.

Five reduced-order models have been constructed. First model
was constructed using 15 modes obtained using a proper orthogo-
nal decomposition technique applied to a set of 72 snapshots ob-
tained varying the interblade phase angles between2180 deg
and 180 deg while the reduced frequencyk was maintained con-
stant of value 0.5. The second model has 15 modes also. However,
it was constructed using a proper orthogonal decomposition tech-
nique applied to a set of 51 snapshots obtained varying the re-
duced frequencyk between 0.0 and 2.0 while the interblade phase
angle s was maintained constant of value 90 deg. The third,
fourth, and fifth models have 25, 35, and 50 degrees-of-freedom,
respectively. These models were constructed using 10310 snap-
shots obtained varyings between2180 deg and 180 deg andk
between 0.0 and 2.0.

First, we investigate the performance of the reduced-order mod-
els for various interblade phase angles. Shown in Fig. 12 are the
results obtained for a pitching motion of the airfoils with reduced
frequencyk of 0.5. The reduced-order models with 15 and 50
degrees-of-freedom, are shown to capture accurately the response
computed using the full model. The model with 25 modes ob-

tained using snapshots for various values ofk and s is accurate
over a limited spectrum of interblade phase angles only. However,
an additional number of 25 modes are sufficient to construct a
reduced-order model which is accurate over the entire spectrum of
interblade phase angles. Only the real part of the coefficient of lift
is shown. The performance of the reduced-order models in com-
puting the imaginary part of the coefficient of lift is similar and
not shown here.

Next, we investigate the performance of the reduced-order
models over a range of reduced frequencies. Shown in Fig. 12 are
the responses of the full model and the reduced-order models for
an interblade phase angle of 90 deg. The reduced-order models
with 15 and 25 degrees-of-freedom are shown to model accurately
the dynamics of the full model. The additional 25 modes or
degrees-of-freedom used for large interblade phase angles, are not
required here because the interblade phase angle of 90 deg falls
into the region of interblade phase angles where the model with
25 degrees-of-freedom models accurately the full system, as
shown in Fig. 12.

Similar to the subsonic calculations, Fig. 13 and Fig. 14 show
that the accuracy of the modes obtained using a proper orthogonal
decomposition technique is a critical factor. In these two figures, a
25-mode model is shown to predict accurately the flow dynamics.

Fig. 9 Unsteady coefficient of lift CL for a pitching motion about the mid-chord, upstream far-field Mach number of 0.55 and
reduced frequency k of 1. Snapshots are computed at a Mach number of 0.50 and 0.55. Left: real part. Right: imaginary part.

Fig. 10 Unsteady coefficient of lift CL for a pitching motion about the mid-chord, upstream far-field Mach number of 0.70 and
interblade phase angle s of 90 deg. Left: real part. Right: imaginary part.
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To obtain similar accuracy, a model with 50 modes is required
when less accurate proper orthogonal decomposition modes~i.e.,
modes computed based on a smaller number of snapshots! are
available, as shown in Fig. 12. One may note that the 25-mode
model used in Fig. 13 and Fig. 14 is distinct from the 25-mode
model used in Fig. 12 because the two models were constructed
using different snapshots. The reason for the lower number of
required modes shown in Fig. 13 and Fig. 14 is the accuracy of
the proper orthogonal decomposition modes used for reduction
which is very important for the transonic case since large spatial
gradients are present in the flow due to shocks. Thus, a larger
reduction in the required number of modes is observed for the
transonic flows than for subsonic flows, i.e., 25 compared to 10.
Similar to the subsonic cases, the 25-mode model was constructed
using 700 snapshots whereas the 50-mode model was constructed
using 100 snapshots. Also, the 20-mode model shown in Fig. 13
and Fig. 14 predicts well the trends in the flow response although
it is not as accurate as the 25-mode model because it has fewer
modes. This observation suggests that the factor limiting the fur-
ther decrease below 25 of the required number of modes of the
reduced-order models is the dimension of the inertial manifold of
the flow dynamics. It is interesting to note also that for a fixed
total frequency of interest, if one continues to increase the number

of frequencies within that interval at which snapshots are taken,
there is a point beyond which increasing the number of snapshots
may not improve the result. This is because if snapshots are taken
at adjacent frequencies which are too close, then the information
obtained may not be sufficiently linearly independent and this can
lead to numerical difficulties.

The subsonic and transonic reduced-order models indicate that
the number of modes required to model accurately the flow dy-
namics is approximately 25 and it is not strongly dependent on the
upstream far-field Mach number. The critical factor is the accu-
racy of the proper orthogonal decomposition modes used for
model reduction. Nevertheless, the value of the Mach number has
an important influence on the accuracy of the proper orthogonal
decomposition modes~for a given number of snapshots! thus in-
directly influencing the accuracy of the reduced-order models.

In both the subsonic and transonic cases, the models based on
snapshots at one fixed reduced frequency~or interblade phase
angle! were observed not to be accurate when used at a different
reduced frequency~or interblade phase angle!.

5 Conclusions
An inviscid model of a subsonic or low transonic flow in a

two-dimensional turbomachinery cascade has been used to com-

Fig. 11 Unsteady coefficient of lift CL for a pitching motion about the mid-chord, upstream far-field Mach number of 0.70 and
reduced frequency k of 1. Left: real part. Right: imaginary part.

Fig. 12 Real „in-phase … part of the unsteady coefficient of lift CL for a pitching motion about the mid-chord and upstream
far-field Mach number of 0.80. Left: reduced frequency 0.5. Right: interblade phase angle 90 deg.
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pute steady and unsteady flows. The unsteady flow has then been
linearized about the nonlinear steady response and a frequency
domain model has been constructed. This model has been vali-
dated and shown to provide similar results when compared to
previous computational data presented in the literature.

Three subsonic and three transonic reduced-order models have
been constructed in the frequency domain using proper orthogonal
decomposition. A cascade of airfoils forming a slightly modified
Tenth Standard Configuration has been investigated. A reduced-
order model with only 10 degrees-of-freedom has been shown to
predict accurately the unsteady response over a wide range of
reduced frequencies when compared to a full model with approxi-
mately 5000 degrees-of-freedom. Similarly, a second reduced-
order model with only 10 degrees-of-freedom has been shown to
predict accurately the unsteady response over a full spectrum of
interblade phase angles and a fixed reduced frequency. Finally, a
third model model with 35 degrees-of-freedom has been shown to
model accurately the flow dynamics over a full spectrum of inter-
blade phase angles and a wide range of reduced frequencies.

Flows with an upwind far-field Mach number of 0.80 have been
investigated. A reduced order model with only 15 degrees-of-
freedom has been shown to model accurately the unsteady re-

sponse over a wide range of reduced frequencies when compared
to a full model with approximately 17,500 degrees-of-freedom.
Similarly, a second reduced-order model, with 15 degrees-of-
freedom also, has been shown to predict accurately the unsteady
response over a full spectrum of interblade phase angles and a
fixed reduced frequency. Finally, a third-model model with 50
degrees-of-freedom has been shown to model accurately the flow
dynamics over a full spectrum of interblade phase angles and a
wide range of reduced frequencies.

The reduced-order model obtained using snapshots computed at
an upstream far-field Mach number of 0.50 were used to construct
reduced-order models of flows with other Mach numbers. In such
cases, the accuracy of the reduced-order models was found to be
dependent on the difference in the Mach number values for the
flow and the snapshots. Also, trends in the dynamics of the system
were well predicted, e.g., increasing or decreasing magnitudes of
the coefficient of lift, cuton or cutoff frequencies. Accurate quan-
titative results were obtained for a Mach number of 0.55 using
snapshots collected at a Mach number of 0.50.

The number of modes required to model accurately the flow
dynamics was shown to be approximately 25 for the cascade con-
figuration investigated. The required number of modes in a

Fig. 13 Unsteady coefficient of lift CL for a pitching motion about the mid-chord, upstream far-field Mach number of 0.80 and
interblade phase angle s of 90 deg. Left: real part. Right: imaginary part.

Fig. 14 Unsteady coefficient of lift CL for a pitching motion about the mid-chord, upstream far-field Mach number of 0.80 and
reduced frequency k of 1. Left: real part. Right: imaginary part.
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reduced-order model was shown to be only weakly dependent on
the upstream far-field Mach number, while the critical factor is the
accuracy of the proper orthogonal decomposition modes used for
model reduction. As previously observed~@10,11#!, the value of
the Mach number has an important influence on the accuracy of
the proper orthogonal decomposition modes~for a given number
of snapshots! thus indirectly influencing the accuracy of the
reduced-order models.

The numerical examples provided show that the inertial mani-
fold of the dynamics of subsonic as well as transonic flow has a
very small number of degrees-of-freedom for a broad range of
Mach numbers. Thus, we have shown numerically that the main
assumption made in the proper orthogonal decomposition tech-
nique holds as the dynamics the systems is low dimensional.
Thus, a proper orthogonal decomposition representation of a more
precise full model such as a three-dimensional Navier-Stokes
model may not be very large as long as the required proper or-
thogonal decomposition modes are computed accurately. There
are several ways to improve the accuracy of the proper orthogonal
decomposition modes used for reduction. One method, used in
this paper, is to increase the number of snapshots. However, this
method may be computation intensive and not easily available in
certain calculations. Thus, alternate techniques are currently under
evaluation and are part of the future work. Nevertheless, less ac-
curate proper orthogonal decomposition modes may be used as
well. The drawback is an increased number of degrees-of-freedom
of the reduced-order models However, this drawback is not major
as even the increased the number of degrees-of-freedom consti-
tutes a dramatic model reduction when compared to the full
model.

Acknowledgments
The first author would like to acknowledge the financial support

of NSERC-Canada and FCAR-Canada.

References
@1# Greitzer, E. M., 1976, ‘‘Surge and Rotating Stall in Axial Flow Compressors.

Part I: Theoretical Compression System Model,’’ J. Eng. Power,98~1!, pp.
190–198.

@2# Moore, F. K., and Greitzer, E. M., 1986, ‘‘A Theory of Post-Stall Transients in
Axial Compression Systems: Parts I and II,’’ ASME J. Eng. Gas Turbines
Power,108~1!, pp. 68–76.

@3# Whitehead, D. S., 1959, ‘‘The Vibration of Cascade Blades Treated by Actua-
tor Disk Methods,’’ Proc. Inst. Mech. Eng.,173~21!, pp. 555–563.

@4# Dowell, E. H., 1980, ‘‘A Simple Method for Converting Frequency Domain
Aerodynamics to the Time Domain,’’ NASA, Lewis Research Center.

@5# Peterson, L. D., and Crawley, E. F., 1988, ‘‘Improved Exponential Time Series
Approximation of Unsteady Aerodynamic Operators,’’ J. Aircr.,25~2!, pp.
121–127.

@6# Ueda, T., and Dowell, E. H., 1984, ‘‘Flutter Analysis Using Nonlinear Aero-
dynamic Forces,’’ J. Aircr.,21~2!, pp. 101–109.

@7# Dowell, E. H., 1995, ‘‘Eigenmode Analysis in Unsteady Aerodynamics: Re-
duced Order Models,’’Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Vol. 1, New Or-
leans, LA, AIAA, Washington, DC, pp. 1–13.

@8# Hall, K. C., 1994, ‘‘Eigenanalysis of Unsteady Flows About Airfoils, Cas-
cades, and Wings,’’ AIAA J.,32~12!, pp. 2426–2432.

@9# Dowell, E. H., Hall, K. C., Thomas, J. P., Florea, R., Epureanu, B. I., and
Heeg, J., 1999, ‘‘Reduced Order Models in Unsteady Aerodynamics,’’Pro-
ceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference and Exhibit, Vol. 1, AIAA, Waldorf, MD,
pp. 622–637.

@10# Epureanu, B. I., Hall, K. C., and Dowell, E. H., 2000, ‘‘Reduced Order Models
of Unsteady Transonic Viscous Flows in Turbomachinery,’’ J. Fluids Struct.,
18~8!, pp. 1215–1235.

@11# Epureanu, B. I., Hall, K. C., and Dowell, E. H., 2001, ‘‘Reduced Order Models
of Unsteady Viscous Flows in Turbomachinery Using Viscous-Inviscid Cou-
pling,’’ J. Fluids Struct.,15~2!, pp. 255–276.

@12# Hall, K. C., Thomas, J. P., and Dowell, E. H., 1999, ‘‘Reduced-Order Model-
ling of Unsteady Small-Disturbance Flows Using a Frequency-Domain Proper
Orthogonal Decomposition Technique,’’Proceedings of the 37th Aerospace
Sciences Meeting and Exhibit, Vol. 99-0655, Reno, NV, AIAA, Washington,
DC, pp. 1–11.

@13# Romanowski, M. C., 1996, ‘‘Reduced Order Unsteady Aerodynamic and
Aeroelastic Models Using Karhunen-Loe`ve Eigenmodes,’’Proceedings of the
6th AIAA Symposium on Multidis ciplinary Analysis and Optimization, vol. 1,
Bellevue, WA, AIAA, Washington, DC, Paper No. 96-3981, pp. 1–7.

@14# Willcox, K. E., Peraire, J., and White, J., 2000, ‘‘An Arnoldi Approach for
Generation of Reduced-Order Models for Turbomachinery,’’ presented at the
38th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper No.
2000-0884.

@15# Dowell, E. H., and Ilgamov, M., 1988,Studies in Nonlinear Aeroelasticity, 1st
Ed., Springer-Verlag, New York.

@16# Hall, K. C., 1993, ‘‘Deforming Grid Variational Principle for Unsteady Small
Disturbances Flows in Cascades,’’ AIAA J.,31~5!, pp. 891–900.

@17# Hall, K. C., Lorence, C. B., and Clark, W. S., 1993, ‘‘Nonreflecting Boundary
Conditions for Linearized Unsteady Aerodynamic Calculations,’’31st Aero-
space Sciences Meeting & Exhibit, Vol. 93-0882, Reno, NV, AIAA, Washing-
ton, DC, pp. 1–15.

@18# Strain, M. C., and Greenside, H. S., 1998, ‘‘Size-Dependent Transition to
High-Dimensional Chaotic Dynamics in a Two-Dimensional Excitable Me-
dium,’’ Phys. Rev. Lett.,80~11!, pp. 2306–2309.

@19# Epureanu, B. I., and Dowell, E. H., 1997, ‘‘System Identification for Ott-
Grebogi-Yorke Controller Design,’’ Phys. Rev. E,56~5!, pp. 5327–5331.

@20# Epureanu, B. I., and Dowell, E. H., 1998, ‘‘On the Optimality of the OGY
Control Scheme,’’ Physica D,116~1–2!, pp. 1–7.

@21# Epureanu, B. I., Trickey, S. T., and Dowell, E. H., 1998, ‘‘Stabilization of
Unstable Limit Cycles in Systems With Limited Controllability: Expanding the
Basin of Convergence of OGY-Type Controllers,’’ Nonlinear Dyn.,15~2!, pp.
191–205.

@22# Kim, T., 1998, ‘‘Frequency Domain Karhunen—Loe´ve Method and Its Appli-
cation to Linear Dynamic Systems,’’ AIAA J.,36~11!, pp. 2117–2123.

@23# Sirovich, L., 1987, ‘‘Turbulence and the Dynamics of Coherent Structures,
Part I: Coherent Structures,’’ Q. Appl. Math.,XLV ~3!, pp. 561–571.

@24# Sirovich, L., 1987, ‘‘Turbulence and the Dynamics of Coherent Structures,
Part II: Symmetries and Transformations,’’ Q. Appl. Math.,XLV ~3!, pp. 573–
582.

@25# Fransson, T. H., and Verdon, J. M., 1993, ‘‘Panel Discussion on Standard
Configurations for Unsteady Flow Through Vibrating Axial-Flow Turboma-
chine,’’ In H. M. Atassi, editor,Unsteady Aerodynamics, Aeroacoustics and
Aeroelasticity of Turbomachines and Propellers, Vol. 1, H. M. Atassi, ed.,
Springer-Verlag, New York, pp. 859–889.

Journal of Fluids Engineering DECEMBER 2002, Vol. 124 Õ 987

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



V. Esfahanian
e-mail: evahid@chamran.ut.ac.ir

M. Behbahani-nejad

Department of Mechanical Engineering,
University of Tehran,

North Amin Abad Avenue,
Tehran, Iran

Reduced-Order Modeling
of Unsteady Flows About
Complex Configurations Using
the Boundary Element Method
An approach to developing a general technique for constructing reduced-order models of
unsteady flows about three-dimensional complex geometries is presented. The boundary
element method along with the potential flow is used to analyze unsteady flows over
two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Ei-
genanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with
the NACA 0012 section and a wing-body configuration is performed in time domain based
on the unsteady boundary element formulation. Reduced-order models are constructed
with and without the static correction. The numerical results demonstrate the accuracy
and efficiency of the present method in reduced-order modeling of unsteady flows over
complex configurations.@DOI: 10.1115/1.1511166#

Introduction
Reduced-order modeling is a conceptually novel and computa-

tionally efficient technique that is recently used in analysis of
unsteady flows. Unsteady flow eigenmodes are used to construct
reduced-order unsteady flow models similar to the normal mode
analysis in structural dynamics. Although the modal analysis of
structures is quite routine, the modal analysis of unsteady flows is
still in the developing stage. The advantage to a modal approach is
that one may construct a reduced-order model by retaining only a
few of the original modes. Eigenanalysis of unsteady potential
flows about flat airfoils, cascades, and wings has been applied by
Hall @1#. He constructed reduced-order models based on unsteady
incompressible vortex lattice method and found that in order to
obtain satisfactory results, the static correction technique must be
used. Romanowski and Dowell@2# applied reduced-order model-
ing to the subsonic unsteady flows based on the Euler equations
about a NACA 0012 airfoil. Reduced-order modeling of unsteady
viscous flow in a compressor cascade based on the coupled poten-
tial flow and boundary layer approximation has been applied by
Florea et al.@3#, and the status of reduced-order modeling of un-
steady aerodynamic systems has been reviewed by Dowell et al.
@4#.

Although less than a decade is spent from application of
reduced-order modeling in unsteady aerodynamic systems, almost
all of the previous studies have been done for two-dimensional
cases. One of the main difficulties with applying reduced-order
modeling to the real three-dimensional geometries using field dis-
cretization approaches is that the resulting formulation has a very
large degree-of-freedom. This makes the computation of eigenval-
ues and eigenvectors very cumbersome. Therefore, any procedure
that reduces the degrees-of-freedom of the problem, makes the
eigenanalysis and reduced-order modeling of unsteady flows
about real geometries more practical.

The Boundary element method is recently known as a powerful
numerical technique in engineering analysis. In CFD analysis and
especially heat transfer problems, the boundary element method
plays an important and efficient role. At the beginning, this
method was used in linear problems but it developed quickly to

analyze nonlinear problems too. One of its main advantages is
reduction of the problem dimensionality by one, since it will be
required to discretize only the boundary of computational domain.

In this context, the boundary element method is used for ei-
genanalysis and reduced-order modeling of unsteady aerodynam-
ics based on unsteady potential flows in two and three-
dimensional cases. Since only the boundary and the wake of the
geometry are discretized, the degrees-of-freedom of the problem
are reduced considerably. Therefore, one can compute all of the
eigenvalues and eigenvectors using the well-known IMSL rou-
tines~@5#!. Moreover, one can use the Lanczos method to compute
only a small subset of the largest eigenvalues and corresponding
eigenvectors for complex geometries which require large number
of boundary elements~@6#!. The present study shows that the num-
ber of zero eigenvalues is the same as the number of elements that
lie on the body. Therefore, the corresponding eigenmodes behave
in quasi-steady fashion. Moreover, the neglected modes which
have large natural frequencies compared to the excitation fre-
quency, also respond in an essentially quasistatic fashion. Hence,
to include approximately the effects of the neglected eigenmodes,
the static correction method is used. In the present work, reduced-
order modeling of unsteady flows based on the boundary element
method around a NACA 0012 airfoil, a three-dimensional wing
with NACA 0012 section and a wing-body configuration are stud-
ied. The results show the efficiency of the boundary element
method in reduced order modeling of unsteady flows about com-
plex configurations.

Basic Formulation
Consider a body with known boundaries, submerged in a po-

tential flow. The body is modeled as a closed surface which di-
vides the space into two external and internal regions~see Fig. 1!.
One region contains the flow field of interest and the other con-
tains a fictitious flow. The flow of interest is in the outer region
where the governing equation in terms of the total potential,F, in
the body’s frame of reference is

¹2F50. (1)

The first boundary condition is zero normal velocity across the
body’s solid boundaries, namely,

¹F•n5¹~f1f`!•n50 (2)

Contributed by the Fluids Engineering Division for publication in the JOURNAL
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
January 11, 2002; revised manuscript received May 3, 2002. Associate Editor: G. E.
Karniadakis.

988 Õ Vol. 124, DECEMBER 2002 Copyright © 2002 by ASME Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



wheref` is the freestream potential,f is the perturbation poten-
tial andn is the outward unit normal on the surface. The second
boundary condition requires that the flow disturbance, due to the
body’s motion through the fluid, should diminish far from the
body,

lim
r→`

¹f50, (3)

wherer is the distance from origin of the body’s frame of refer-
ence. Along the wing’s trailing edges, the velocity has to be finite
in order to fix the rear stagnation line~Kutta condition!. There-
fore, at the trailing edge one has

¹f,`. (4)

Moreover, in the potential flow region the angular momentum can
not change, thus the circulation,G, is conserved~Kelvin’s theo-
rem!, i.e.,

dG

dt
50. (5)

Boundary Element Formulation
The potential at any pointP in either region may be evaluated

by applying Green’s theorem to both regions which results in the
following boundary integral equation~@7#!:

FP5
1

4p E
SB

F ~F2F i !¹
1

r
2

1

r
¹~F2F i !G•ndS

2
1

4p E
SW1S`

S 1

r
¹F2F¹

1

r D •ndS (6)

wherer is the distance from the pointP to the boundary element
dS, F i is the velocity potential of the fictitious flow,n is the unit
normal vector to the surface pointing into the flow field of interest,
andSB , SW , andS` are the surface of the body, the surface of the
wake and the surface at infinity, respectively, as shown in Fig. 1.
It is assumed that the wake is thin and no aerodynamic loads will
be supported by the wake which means that the jump in normal
velocity across the wake is zero. Therefore, the contribution of the
second integral in Eq.~6! can be written as

E
SW

S 1

r
¹F2F¹

1

r D •ndS5E
SW

U
1SW

L
F¹S 1

r D •ndS

5E
SW

U
DFW¹S 1

r D •ndS (7)

where DFW5FW
U 2FW

L . At the trailing edge, Kutta condition
implies

DFW5FB
U2FB

L . (8)

For the wake points off the trailing edge,DFW is determined
using Eq. ~5!. Using Kelvin’s theorem, one concludes that the
value ofDFW at each time,t, is determined by the corresponding
trailing edge value at timet2t* , wheret* is the time at which the
fluid particle travels the distance between the trailing edge and the
desired point. Using the second boundary condition, Eq.~3!, the
contribution of the second integral in Eq.~6! is equal to 4pf` .
Therefore, using Eqs.~3! and ~7!, Eq. ~6! becomes

FP5
1

4p E
SB

F ~F2F i !¹
1

r
2

1

r
¹~F2F i !G•ndS

2
1

4p E
SW

U
DFW¹S 1

r D •ndS1f` . (9)

The first integral in Eq.~9! represents the disturbance potential
from a surface distribution of doublets and sources with strength
(F2F i) and ¹(F2F i)•n per unit area, respectively. In addi-
tion, the second integral in Eq.~9! represents the surface distribu-
tion of doublets with strengthDFW per unit area. To solve Eq.~9!,
an internal Dirichlet boundary condition~@7#! is used and the po-
tential of the fictitious flow is set equal to the onset potential,f` .
If the point P lies on the surface, the integrals become singular
and it must be excluded from the integration by assuming a hemi-
spherical deformation of the surface centered atP. If the integral
is evaluated for this hemispherical deformation and its radius is
allowed to go to zero, the contribution at pointP is (F2F i)/2.
Therefore, using Dirichlet boundary condition and looking at
point P inside the surface, Eq.~9! can be written as

4pcfP5E
SB

Ff
]

]n S 1

r D2
1

r

]f

]n GdS1E
SW

U
DfW

]

]n S 1

r DdS

(10)

where c51/2 if P is on a smooth part of the inner surface,c
521/2 if P is on a smooth part of the outer surface, and the
integrals onSB are in the sense of Cauchy principal value. In a
similar way, one can obtain the following equation for two-
dimensional problems~@7#!:

2pcfP5E
SB

Ff
]

]n
~ ln r !2 ln r

]f

]n GdS1E
SW

U
DfW

]

]n
~ ln r !dS.

(11)

In order to obtain an approximate solution for the boundary
integral Eq.~10!, the surfacesSB andSW

U are discretized into small
quadrilateral elements. The values off and]f/]n are assumed to
be constant within each element. Therefore, the collocation
method yields the following relation for each collocation point on
the body:

fPh
5(

k51

NB

AhkfPk
1(

k51

NB

BhkS ]f

]n D
Pk

1(
k51

NW

AhkDfPk
(12)

whereNB and NW are the number of elements on the body and
the wake, respectively, and

Ahk5
1

2p E
Sk

]

]n S 1

r DdSk (13)

Bhk52
1

2p E
Sk

S 1

r DdSk (14)

whereSk is the surface of element. The coefficientsAhk andBhk
can be evaluated analytically as~@8#!

Ahk5I D~1,1!2I D~1,21!2I D~21,1!1I D~21,21! (15)

Bhk5I S~1,1!2I S~1,21!2I S~21,1!1I S~21,21! (16)

Fig. 1 Potential flow model of a body submerged in fluid
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where

I D~j,h!5
1

2p
tanp

21S r3a1•r3a2

ur ur•a13a2
D (17)

I S~j,h!52
1

2p H 2r3a1•n
1

ua1u
sinh21S r•a1

ur3a1u D1r3a2

3n
1

ua2u
sinh21S r•a2

ur3a2u D1r•n tanp
21S r3a1•r3a2

ur ur•a13a2
D J
(18)

and2p/2<tanp
21( )<p/2, j andh are local element coordinates,

respectively, anda1 anda2 are corresponding tangent vectors. For
two-dimensional problemsAhk andBhk are

Ahk5
1

p E
Sk

]

]n
~ ln r !dSk (19)

Bhk52
1

p E
Sk

~ ln r !dSk . (20)

The relations in Ref.@7# may be used to compute the coefficients
Ahk andBhk for two-dimensional cases analytically.

The second term in the right-hand side of Eq.~12! is known
from the tangency condition, Eq.~2!, at each time step. Also,Df
is determined via the Kutta condition and Kelvin’s theorem as
explained before. Hence, if Eq.~12! is applied at all of the collo-
cation points over the body and the vectorm is defined as

m5$f1 ,f2 , . . . ,fNB ,Df1 ,Df2 , . . . ,DfNW%T (21)

one can obtain

Amn111Bmn5wn11 (22)

wherew is a known vector derived using tangency condition.
When the velocity potential is computed, the pressure coeffi-

cient may be calculated as~@7#!

Cp512
V2

V`
2 2

2

V`
2

]F

]t
(23)

whereV is the local fluid velocity on the body’s surface.

Reduced-Order Modeling

Consider the homogeneous part of Eq.~22!, setm5xie
l i t and

zi5el iDt, therefore, one obtains

ziAx i1Bxi50 (24)

that is a generalized eigenvalue problem wherezi is thei th eigen-
value andxi is the corresponding right eigenvector. More gener-
ally, we may write

AXZ 1BX50 (25)

whereZ is a diagonal matrix containing the eigenvalues of the
generalized eigenvalue problem, andX is a matrix whose columns
contain the corresponding right eigenvectors. Similarly, the left
eigenvector problem is given by

ATYZ1BTY50. (26)

The eigenvectors satisfy the orthogonality conditions

YTAX5I (27)

YTBX52Z. (28)

The eigenvalues and eigenvectors describe the natural modes of
fluid motion or, at least, the natural modes of the computational
model of fluid motion. In this paper, the boundary element method
is used for eigenanalysis and reduced-order modeling of unsteady
aerodynamics based on unsteady potential flows. Hence, the re-
sulting eigensystem is usually small, and the eigenvalues and

eigenvectors are computed using IMSL routines. However, for
more complex configurations which require large number of
boundary elements, one can use Lanczos method to compute only
a small subset of the largest eigenvalues and corresponding eigen-
vectors.

Next, as is commonly done in the structural dynamic problems,
the dynamic behavior of the fluid is represented as the sum of
individual eigenmodes, i.e.,

m5Xc, (29)

where c is the vector of normal mode coordinates. Substituting
Eq. ~29! into Eq. ~22!, premultiplying byYT and making use of
the orthogonality conditions, gives a set of uncoupled equations
for the modal coordinatesc,

cn112Zcn5YTwn11. (30)

Because the left-hand side of Eq.~30! is now diagonal, each mode
can be marched forward in time independently and inexpensively.
The advantage to a modal approach is that one may construct a
reduced-order model by retaining only a few of the original
modes. Hall@1# has shown that reduced order modeling produces
satisfactory results whenever the static correction is used. For ap-
plying the static correction, one decomposes the unsteady solution
into two parts; a part which is equivalent to response of the system
if the disturbance were quasi-steady and a dynamic part to be
determined, i.e.,

mn5ms
n1m̃n5ms

n1Xc̃n (31)

where ms is the quasisteady portion. Therefore, Eq.~30! is re-
placed by

c̃n112Zc̃n5YTwn112YT~Ams
n111Bms

n!. (32)

Results and Discussions

Two-Dimensional Airfoil. The results in this section are pre-
sented to show the capability of reduced order modeling with just
a few eigenmodes in unsteady flow analysis. A NACA 0012 airfoil
is used as a test case. The airfoil is modeled using 72 boundary
elements with the cosine distribution. The wake length is taken to
be 10 chord length and it is discretized using 100 elements. Figure
2 shows the eigenvalues for the NACA 0012 airfoil in both the
z-plane and thel-plane. The present results are similar with iso-
lated flat airfoil in Ref.@1#. The eigensystem has 172 eigenvalues
which are related to the number of elements considered in dis-
cretization. The present eigenanalysis reveals that the number of
distinct eigenvalues and corresponding eigenvectors that can be
used to construct an eigenspace, is equal to the number of the
wake elements, i.e., 100 in our case. Moreover, the eigensystem in

Fig. 2 Eigenvalues of boundary element model of unsteady
flow about a NACA 0012 airfoil
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thez-plane has 72 zero eigenvalues which correspond to the num-
ber of elements used on the body of the airfoil. On the other hand,
the eigensystem has 72 eigenmodes which are excited instantly
with the motion of the body. In the physical point of view, it
means that the behavior of 72 eigenmodes is exactly quasi-steady.
Therefore, it will be clear that the reduced order modeling without
the static correction can not produce satisfactory results even if a
large number of modes is used, since the effects of the eigen-
modes corresponding to the zero eigenvalues may be only consid-
ered using the static correction.

As reported by Hall@1#, the numerical experiments in the
present study also reveal that the line of eigenvalues in the
l-plane gets denser as the length of the computational wake is
increased with constant the wake element size,Dxw , and gets
longer asDxw is reduced with constant wake length. Inspection of
the eigenvalue patterns in thez-plane andl-plane shows that the
maximum frequency,l I ~the imaginary part ofl!, that can be
resolved, corresponds with thez5uzue6 ip. Therefore, one can
conclude that max(lI)5p/Dt5pU` /Dxw . Hence, changing the
wake element size, changes the maximum resolved frequency, and
as the size of the wake elements becomes infinitesimal, the eigen-
value arms will cover frequency range~6`!. These numerical
experiments also reported by Heeg and Dowell@9#.

The lift and pitching moment loops for the pitch oscillation of
the airfoil are shown in Fig. 3. The pitching axis is at the 1/4 of
chord, the angle of attack,a53 deg110 deg sinkT, and the re-
duced frequency,k5vt/2U`50.10. Although the angle of attack
varies in a wide range (27 deg<a<113 deg) and the wake
roll-up is not considered, comparison of the present method with
Ref. @10# shows satisfactory results. Also the figure shows reduced
order modeling results in comparison with the direct method. Al-
though reduced-order modeling with 40 modes without the static
correction is not capable to give a suitable result, using the static
correction with just one mode, it results in a very good agreement
with the direct method.

Figures 4 and 5 present the results of the airfoil, oscillating at
a561 deg and Mach 0.50, with the reduced frequenciesk
50.10 and 0.40, respectively. The Prandtl-Glaurt compressibility
correction is used to consider compressibility effects. The present
boundary element method and reduced-order modeling results are
in excellent agreement with the unsteady Euler solution used in
Ref. @11# when the static correction is applied.

Three-Dimensional Wing. The capability of reduced order
modeling using the boundary element method in unsteady flow

analysis over three-dimensional wings is demonstrated in this sec-
tion. A three-dimensional wing with the NACA 0012 airfoil sec-
tion and the aspect ratio 4.0, with heaving oscillation abouta
55 deg is used as a test case. Figure 6 shows the wing geometry
and its wake. The body of the wing is modeled using 20 elements
in chordwise and spanwise directions. The wake length is taken to
be 10 chord length and discretized using 40 elements in stream-
wise direction. Eigenvalues of the three-dimensional wing in the
z-plane andl-plane are plotted in Fig. 7. Careful inspection of the
results proves that, as the case in Ref.@1#, the eigenvalues in
l-plane appear to form 20 branch cuts, the same as the number of
elements in the spanwise direction. However, since the distribu-
tion of elements in spanwise direction is taken to be denser from
the root to the tip, and the wing aspect ratio is smaller than the
case in Ref.@1#, 15 branch cuts are overlayed with each other.
Also as reported by Hall@1#, the branch farthest to the right cor-
responds to the first spanwise mode, that is, the mode in which the
doublet elements~vortex ring elements! vary most slowly in the
spanwise direction.

Computed results for the lift variation during a heaving oscil-
lation cycle of the wing with an amplitude ofh/c50.10 about a

Fig. 3 Lift and pitching moment loops for the pitch oscillation
of a NACA 0012 airfoil

Fig. 4 Lift response versus time for a NACA 0012 airfoil at
Mach 0.5 oscillating at Á1 degree about zero angle of attack
with kÄ0.10

Fig. 5 Lift response vs time for a NACA 0012 airfoil at Mach
0.5 oscillating at Á1 degree about zero angle of attack with k
Ä0.40
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5-deg angle of attack with the reduced frequencyk50.10 are
presented in Fig. 8. The results of the direct method are in excel-
lent agreement with those of presented in Ref.@10#. Also, the
figure shows reduced-order modeling results with 1, 2, and 4
eigenmodes with the static correction and reduced-order modeling
results with 40 eigenmodes without static correction. As expected,

reduced-order modeling along with the static correction shows
very good agreement with the direct method. The same results for
the case withk50.30 are shown in Fig. 9.

Wing-Body Configuration. To show the capability of
reduced-order modeling using the boundary element method in
unsteady flow analysis over complex configurations, a wing-body
combination is considered as shown in Fig. 10. The wing-body
combination oscillates in heaving mode with the reduced fre-

Fig. 6 Geometry of the three-dimensional wing and the wake
in heaving oscillation „half of the wing is shown …

Fig. 7 Eigenvalues of boundary element model of unsteady
flow about a rectangular wing with NACA 0012 section

Fig. 8 Periodic lift variation during heaving oscillation with k
Ä0.10, of a rectangular wing with NACA 0012 section

Fig. 9 Periodic lift variation during heaving oscillation with k
Ä0.30, of a rectangular wing with NACA 0012 section

Fig. 10 Dimensions of the wing-body combination

Fig. 11 Geometry of the wing-body combination and its wake
in heaving oscillation
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quency,k50.30, about a 5-deg angle of attack. Figure 11 shows
computational mesh over the body and its wake. Because of sym-
metry, half of the wing-body and its wake is discretized. The
surface of the wing-body combination is modeled using 894 ele-
ments. The wake length is taken to be ten times of the maximum
chord length and is discretized using 10 and 40 elements in span-
wise and streamwise directions, respectively.

Eigenvalues of the wing-body combinations in thez-plane and
l-plane are plotted in Fig. 12. Since ten elements are used in
spanwise direction, ten branch cuts in thel-plane are expected
which are shown in Fig. 12. The eigenvalues spectrum is qualita-
tively similar to the three-dimensional wing, i.e., the branch far-
thest to the right corresponds to the first spanwise mode in which
the doublet elements vary most slowly in the spanwise direction.

Computed results for the lift variation during a heaving oscil-
lation cycle of the wing-body configuration with an amplitude of
h/c50.10 about a 5-deg angle of attack with the reduced fre-
quencyk50.30 are presented in Fig. 13. The results of reduced-
order modeling with 1, 2, and 4 eigenmodes with the static cor-
rection and with 40 eigenmodes without the static correction are
compared with those of the direct method. As expected, reduced-
order modeling along with the static correction shows very good
agreement with the direct method which indicates the efficiency
of the boundary element method used for reduced-order modeling
of unsteady flows around complex configurations.

Conclusions
This study demonstrates that reduced-order models of unsteady

flows in general three-dimensional cases can be constructed effi-
ciently based on the boundary element method. The resulting
eigensystem of unsteady flow over a three-dimensional configura-
tion may be solved using well-known IMSL routines. The number
of zero eigenvalues of an unsteady flow model based on the
boundary element method is equal to the number of elements that
lie on the body. Therefore, the maximum number of eigenvectors
that may be used, is equal to the number of the wake elements.
Hence, some of the eigenmodes which are equal to the body’s
elements behave exactly in quasi-static fashion and reduced-order
modeling without the static correction cannot give satisfactory
results even if the large number of eigenmodes is used. However,
reduced-order modeling with the static correction based on the
boundary element method can accurately predict the unsteady
flow characteristics over complex configurations using just a few
eigenmodes.
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Effect of Gap Size on Tip Leakage
Cavitation Inception, Associated
Noise and Flow Structure
This paper focuses on the onset of tip-leakage cavitation on a fixed hydrofoil. The objec-
tives are to investigate the effect of gap size on the flow structure, conditions of cavitation
inception, the associated bubble dynamics and cavitation noise. The same hydrofoil with
three tip gap sizes of 12%, 28%, and 52% of the maximum tip thickness are studied.
Controlled cavitation tests are performed after de-aerating the water in the tunnel and
using electrolysis to generate cavitation nuclei. The experiments consist of simultaneously
detecting cavitation inception using a 2000 fps digital camera (visual) and two acceler-
ometers (‘‘acoustic’’) mounted on the test section windows. Good agreement between
these methods is achieved when the visual observations are performed carefully. To obtain
the time-dependent noise spectra, portions of the signal containing cavitation noise are
analyzed using Hilbert-Huang transforms. Rates of cavitation events as a function of the
cavitation index (s) for the three gap sizes are also measured. The cavitation inception
index decreases with increasing gap sizes. The experiments demonstrate that high-
amplitude noise spikes are generated when the bubbles are distorted and ‘‘shredded’’—
broken to several bubbles following their growth in the vortex core. Mere changes to
bubble size and shape caused significantly lower noise. High-resolution particle image
velocimetry (PIV) with a vector spacing of 180mm is used to measure the flow, especially
to capture the slender tip vortices where cavitation inception is observed. The instanta-
neous realizations are analyzed to obtain probability density functions of the circulation
of the leakage vortex. The circulation decreases with increasing gap sizes and minimum
pressure coefficients in the cores of these vortices are estimated using a Rankine model.
The diameter of the vortex core varied between 540–720 mm. These coefficients show a
very good agreement with the measured cavitation inception indices.
@DOI: 10.1115/1.1514496#

1 Introduction

Cavitation occurs in liquid flows when a nucleus~bubbles, par-
ticles, etc.! is captured in a region where the pressure is lower or
equal to the vapor pressure~Arndt @1# and Brennen@2#!. Such
low-pressure regions could be at the cores of vortical structures
that frequently occur in shear flows~Arndt @1#, Katz and O’Hern
@3#, O’Hern @4#, Ran and Katz@5#, Belahadji et al.@6#, and Go-
palan et al.@7#!. Experimental studies on tip vortex formation and
resulting cavitation have been addressed, e.g., by Higuchi et al.
@8#, and Maines and Arndt@9# and a numerical study of steady-
state tip vortex aimed at predicting the core pressure has been
reported by Hsiao and Pauley@10#. Several papers in recent years
have dealt with cavitation in tip leakage or tip clearance flows,
i.e., cases where the wing tip is located near a solid boundary
leaving only a narrow gap. A tip leakage vortex develops as a
result of the clearance between the tip and the wall, which is
prone to cavitation~Farrell and Billet@11# and Boulon et al.@12#!.
Farrell and Billet@11# examine the effect of gap size on tip leak-
age cavitation in a rotating turbomachine and find that for nar-
rower gaps the cavitation inception indices decrease with increas-
ing gap sizes. They also find a minimum in the cavitation
inception index nearl'0.2; l being the ratio of tip gap size to
the maximum tip thickness. Conversely, experiments performed
by Boulon et al.@12# in a setup similar to the present study, i.e.,
no relative motion between the tip and the end wall, do not show

a minimum in the cavitation inception index. This trend is consis-
tent with the present observations and can be explained using a
potential flow model, elaborated in Boulon et al. and discussed
briefly in Section 4 of this paper. In Boulon et al. the hydrofoil is
elliptical and has a NACA 16-020 cross section, a chord length of
0.12 m at root, a span of 0.18 m, and an aspect ratio of 3.8. The
noticeable difference is that for gap sizes of 4 mm and smaller,
Boulon et al. found attached cavitation on the tip of the hydrofoil
along with tip vortex cavitation. For gap sizes higher than 4 mm,
tip vortex cavitation is dominant. In our case we do not see at-
tached cavitation at the measured cavitation indices. There is only
tip leakage vortex cavitation.

The present paper provides high magnification, high-speed pho-
tographs of bubbles during cavitation in the tip leakage vortex
along with simultaneous measurements of the resulting noise. The
observations demonstrate clearly that high noise spikes occur
when the bubbles break up in the vortex core. Mere oscillations in
bubble size and shape cause significantly lower amplitude signals.
Detailed measurements of the velocity and thus vorticity and cir-
culation of the tip leakage vortex along with vortex core size are
used for estimating the minimum pressure coefficients in the core.
These coefficients compare well to the cavitation inception indi-
ces. The following are addressed:~i! cavitation inception measure-
ments using visual and acoustic techniques,~ii ! a comparison be-
tween the acoustic signal and the visual occurrence of cavitation,
including a detailed spectral analysis of the signal, and~iii ! the
strength of the tip leakage vortex and the effect of gap size on the
leakage flow characteristics. The same hydrofoil with three tip gap
sizes of 0.6, 1.4, and 2.6 mm are studied, corresponding tol
50.12, 0.28, and 0.52, respectively.

1Formerly at the Naval Surface Warfare Center, West Bethesda, MD.
Contributed by the Fluids Engineering Division for publication in the JOURNAL

OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
March 21, 2002; revised manuscript received May 3, 2002. Associate Editor: G. E.
Karniadakis.
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2 Experimental Setup and Procedure
The tests are performed in a specially designed water tunnel

located at The Johns Hopkins University Fig. 1~a!. The 6.35
35.08 cm2 test section has a minimum length of 41 cm and maxi-
mum entrance velocity of 13 m/s, although the present tests were
performed at 5 m/s. The flow is driven by two 11 KW centrifugal
pumps located 4 m below the test section to prevent pump cavi-
tation. The facility has windows~made of optical grade lucite! on
four sides to enable easy access for PIV measurements. A hydro-
foil is attached to the side window and its tip has a small clearance
with the opposite side window~Fig. 1~b!!. The hydrofoil has a
thickness to chord ratio of 0.1, constant chord of 50 mm, span of
50 mm, skew and rake is 0 and nonzero pitch and camber. Two
three-dimensional views of the hydrofoil are shown in Fig. 1~c!.
The maximum tip thickness is 5 mm~at midchord! and the hy-
drofoil is loaded towards the tip. The estimated spanwise distri-
bution of the lift coefficient at a 0 deg incidence angle is shown in
Fig. 2. Lift coefficient values have been prescribed based on ‘‘real

Fig. 1 „a… Experimental facility, „b… close-up of test section, „c…
two three-dimensional views of the hydrofoil, showing the
geometry

Fig. 2 Estimated spanwise lift distribution on the hydrofoil at
0 deg incidence

Fig. 3 Size distribution of cavitation nuclei measured up-
stream of the leading edge of the hydrofoil
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conditions’’ and the hydrofoil has been designed thereafter using a
viscous code at NSWC-Carderock~Chen@13#, private communi-
cation!. The tip clearance~or gap! size is varied by varying the
thickness of the side window located next to the tip. Boundary
layer suction followed by tripping is used on the wall near the tip
as shown in Fig. 1~b! ~side view! to generate a fully developed
turbulent boundary layer on the wall. The boundary layer thick-
ness at the hydrofoil location is estimated to be 2.7 mm, based on
a flat-plate turbulent boundary layer with a thickness of trip
height50.5 mm at the trip location. Hence the tip gap sizes are
22.2%, 51.8%, and 96.3% of the wall boundary layer thickness.

The freestream velocity in the test-section is fixed at 5 m/s,
which corresponds to a Reynolds number Rec , based on chord,c
equal to 2.53105. Plots of cavitation index,s versus the rate of
cavitation events,r c , wheres5(P02Pv)/0.5rV2, P0 is the am-
bient pressure in the test section,Pv is the vapor pressure, andV
is the freestream velocity are obtained in nuclei controlled condi-
tions. The cavitation index is regulated by varying the ambient
pressure in the test chamber. The air content is reduced to about 3

ppm by keeping the facility under vacuum for extended periods
and the dissolved oxygen content measured using an oxygen
meter. The cavitation nuclei are supplied by electrolysis using two
vertical wires, located in the settling chamber upstream of the test
section next to the honeycombs shown in Fig. 1~a!. The bubble
generation rate, approximately 2500/s can be controlled by vary-
ing the current through the electrodes. The nuclei size distribution
generated by this setup is measured using silhouette photographs
at high magnification~following the procedure described in Go-
palan et al.@7#!. As the distribution shown in Fig. 3 indicates, the
bubble diameters vary between 50–250mm with a median at
approximately 100mm.

Two accelerometers~PCB309A, made by PCB Piezotronics!
with a resonant frequency of 120 kHz were used to detect cavita-
tion events. As shown in Fig. 4~a!, one sensor is attached to the
side window and the other to the bottom window, both at the
vicinity of the blade trailing edge. A high-speed camera~Kodak
Ektapro EM Motion Analyzer, Model 1012! operating at 2000 fps
is used to record images of the cavitating bubbles in the tip leak-
age vortex. The timing of the image acquisition is synchronized
with the accelerometer signal. Careful comparisons, examples of
which are shown in this paper, result in a good correlation be-
tween the physical appearance of the bubbles and the accelerom-
eter signal. A Data Translation, 12 bit, A-D board capable of sam-
pling rates up to 1 MHz is used for acquiring the accelerometer
signals and the signal from the stroboscope. The data is acquired
at 250 kHz/channel using LabView based software. Using an in-
house code, the accelerometer signals are analyzed for counting
the rate of cavitation events and for tagging the high-speed frames

Fig. 4 „a… Setup for cavitation inception measurements. „b…
Setup for PIV measurements in the plane X8Y. Intersection of
tip and TE corresponds to YÄ0.

Fig. 5 A sample accelerometer signal showing several spikes
caused as a result of cavitation

Fig. 6 Cavitation event rates as a function of the cavitation
index s, for three gap sizes
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~example—Fig. 8~b!!. Each data point in Fig. 6 is based on a 10 s
long signal sampled at 250 kHz. The code used to count the cavi-
tation events, first identifies points in the signal with amplitudes
greater than 1.2 V and then searches for amplitudes>3.3 V in a
time interval of 0.06 ms from the original point. If it finds such
points it is counted as an event. In order to avoid counting the
same event more than once, the program jumps 1.4 ms after find-
ing an event and then continues.

PIV experiments are performed using a system described in
Roth et al. @14# and Roth and Katz@15#. The light source is
Nd:YAG laser and images are recorded using a 2K32K pixel2

digital camera with built in image shifting. Fluorescent particles
are used as tracers and a filter in front of the camera lens filters out
the incident green light~Sridhar and Katz@16# and Gopalan and
Katz @17#!. An inclined light sheet~Fig. 4~b!! is necessary to mea-
sure the circulation of the leakage vortices. When a sheet at an
anglea is used in water bounded by material of different refrac-
tive index ~lucite!, a proper interface at an angle,g, given by
tang/tana5n(lucite)/n(water) ~where n is the refractive index!
has to be created. As shown in Fig. 4~b!, we use a triangular lucite
canister attached to the side window and filled with Dow Corning
550 fluid, which has a refractive index of 1.5, i.e., the same as
lucite. The images are first analyzed initially with a 64
364 pixel2 interrogation window and a 32 pixel spacing. Then
using the output of the first run as a ‘‘guess input,’’ the displace-
ments are measured using 32332 pixel2 interrogation windows
and 16 pixel vector spacing. This approach is feasible only when
there is good particle seeding~4–5 per window! in a 32
332 pixel2 window. Under these conditions, the uncertainty in
velocity measurements is about 0.4 pixels as discussed in detail in
Roth et al.@14#. This procedure enables to obtain high-resolution
velocity fields with vector spacing of 180mm. Such measure-
ments are imperative since tip vortex core diameters are less than
1 mm. Vorticity is calculated from the velocity using a second
order finite difference scheme. The error in the vorticity, based on
the characteristic vorticity is approximately 25%.

3 Cavitation Event Rates and Cavitation Noise
A sample accelerometer signal showing noise spikes caused by

cavitation is shown in Fig. 5. Without nuclei seeding~i.e. bubble
generation! the number of cavitation events for a 10 s period at
this cavitation index decreases from 50 to 1. The accelerometer
signals are analyzed to obtain plots of cavitation index versus rate

of cavitation events,r c , for the three gap sizes. The results~Fig.
6! show that for all three cases the event rates increase with de-
creasings and with decreasing gap sizes. As an example at 10
events/s,s for the 0.6 mm gap is 11.5 as compared to 10.1 for the
1.4 mm gap and 9.0 for the 2.6 mm gap. The slope of the 0.6 mm
gap is also quite different than those of the 1.4 and 2.6 mm gaps.
Since all the experiments are performed with similar nuclei distri-
butions, the substantial differences in event rate indicates that the
probability of finding low-pressure regions decreases with in-
creasing gap size. For the 2.6 mm gap atr c.14, the curve flattens
out. This trend occurs due to the increased concentration of nuclei
resulting from prior cavitation events, a self-feeding phenomenon.
Figure 6 also contains equations of power fit curves for the three
gaps.

Farrell and Billet@11#, for a rotating turbomachine, have ob-
served a minimum in the cavitation inception index as a function
of the gap size~at l;0.2), while Boulon et al.~with a fixed wing!
do not, similar to our results. Several features of a tip leakage flow
in a rotating turbomachine don’t occur in this study~and that of
Boulon et al.!—the motion of the tip relative to the end wall,
effect of centrifugal forces, and unloading of the tip~ours is in-
tentionally loaded!. These differences most likely have a signifi-
cant impact on the flow structure which may explain why some
investigators observe a minimum in cavitation index while some
do not. Another related issue is the interpretation of the cavitation
inception index and the event rates. Bubbles with diameters of
100mm require little tension to initiate cavitation, thus the bubble
size is intentionally not a critical issue in the present study. Also,
generation of 2500 bubbles per second makes cavitation inception
less sensitive to bubble populations. However, being a very tur-
bulent flow—a vortex embedded in a boundary layer, infrequent
cavitation events~e.g., less than 2 per second! are a result of
‘‘extreme’’ flow conditions and are not typical of the flow. With
increasing events rate a trend can be correctly identified. At least
for relatively highs, the slope of the cavitation event rate curve
indicates the distribution of points in the flow with pressure lower
than that indicated by the cavitation index. Thus, the slope of the
cavitation event rate curve is important in addition to its absolute
values.

Figure 7 shows the trajectory of a tip leakage vortex for a gap
of 0.6 mm, visualized by cavitating bubbles and superposing six
consecutive frames recorded at 1000 fps. The helical shape of the
vortex trajectory is clearly evident. Three samples of high-speed
image series at time intervals of 0.5 ms and the associated accel-

Fig. 7 Six consecutive frames, 1 ms apart, are superimposed to show the trajectory of the bubbly tip leakage vortex. The
gap size in this example is 0.6 mm.
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erometer signals are presented in Figs. 8, 9, and 10~top views!.
We have carefully examined numerous such matches between
‘‘acoustically’’ sensed cavitation and visually observed cavitation.
Figure 8 is a high-speed image series for the 2.6 mm gap. Cavi-
tation noise starts at frame 1303 and continues on till frame 1307
~Fig. 8~b!!. The highest amplitude noise occurs between frame

1303–1304, where the bubble becomes highly distorted and frag-
mented. Observe that the bubble migrates towards the tip indicat-
ing the existence of secondary flows. As will be discussed shortly
multiple flow structures exist only in the case of the wider gap.
Table 1 shows the RMS values of the signal between consecutive
frames. Clearly, the highest RMS values~an order of magnitude

Fig. 8 „a… A high-speed series „frames 1299–1304 … at 2000 fps „gap size, 2.6 mm …. Flow is from left to right with suction surface,
tip and trailing edge „TE… visible „sÄ10…. „b… Corresponding accelerometer and strobe signals „indicated by vertical bars …. „c…
Hilbert-Huang spectrum of the accelerometer signal. Frame timings are indicated by dashed lines. Table 1 is included in Fig. 8.
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higher! are observed between frames 1303–1304 and then they
drop to the background levels~0.3! in frames 1307–1308. The
Hilbert-Huang ‘‘amplitude’’ spectrum for this signal~HHS! ~pro-
cedures described in Huang et al.@18#! is shown in Fig. 8~c! and
identifies the spectral peaks associated with cavitation as a func-
tion of time. A commercially available software~Princeton Satel-
lite Systems! based on N. E. Huang’s code is used for the analysis.
The frequencies are included in Table 1.

Figure 9~a! shows another high-speed image series with signifi-
cant noise emission in frames 2103–2105~Fig. 9~b!!. Bubble B is
out of focus, is not in the plane of the leakage vortex, and simply
travels with the freestream, while bubble A cavitates—undergoes
considerable growth, distortion, and fragmentation in frames

2103–2105. In frames 2106–2107, the larger part of bubble A
begins to shrink and noise is emitted but of considerably lower
amplitude. Table 2 summarizes the RMS values and spectral
peaks, for this example. High RMS values are observed in frames
2103–2104 and 2104–2105 and the frequencies involved in this
cavitation process are extracted from the HHS in Fig. 9~c!. In Fig.
10~a!, high-amplitude cavitation noise is emitted between frames
1495–1496. At this time bubble C is fragmented to three elon-
gated bubbles. Bubble D undergoes abrupt elongation in frame
1497, emitting further noise. Bubble E emerges around the tip in
frame 1496 and is also seen in 1497. The highest noise spike
occurs as bubble C is fragmented and a second spike at a slightly
lower amplitude appears as bubble D is elongated and deformed.

Fig. 9 „a… A high-speed series „frames 2103–2107 … at 2000 fps „gap size, 2.6 mm …. Flow is from left to right with suction surface,
tip and trailing edge visible „sÄ10…. „b… Corresponding accelerometer and strobe signals „indicated by vertical bars at the
bottom …. „c… Hilbert-Huang spectrum of the accelerometer signal. Frame timings are indicated by dashed lines. Table 2 is included
in Fig. 9.
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Note that mere deformation of bubblesD & C in frames 1493–
1495 results in significantly lower noise levels compared to the
ones resulting from fragmentation in the later frames. Table 3
summarizes the RMS values and spectral peaks in this example
and Fig. 10~c! shows the HHS. Very high RMS values~more than

20 times the level with no cavitation event! are observed in frames
1495–1496 where the highest cavitation activity is observed. One
can note from the HHS that the characteristic frequencies in-
volved in these cavitation processes are 20–28 kHz and 5–8 kHz.
We have examined numerous such data series. They are all con-

Fig. 10 „a… A high-speed series „frames 1493–1498 … at 2000 fps „gap size, 0.6 mm …. Flow is from left to right with suction surface
and tip visible „sÄ10…. „b… Corresponding accelerometer and strobe signals „indicated by vertical bars …. „c… Hilbert-Huang spec-
trum of the accelerometer signal. Frame timings are indicated by dashed lines. Table 3 is included in Fig. 10.
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sistent in showing that high-amplitude noise is associated with
substantial distortion and fragmentation of bubbles. Merely
changes in shape or volume of the bubble generate substantially
weaker noise signals. The differences in bubble size and noise
signals~i.e., the frequency content and amplitude! arenot charac-
teristic to their respective gap sizes, i.e., bubbles of various sizes
appeared in all gap sizes.

Figure 11 shows extended exposure images of the trajectory of
the bubbly tip leakage vortex as seen in a side view for the three
gap sizes. The following observations can be made:~a! the vortex
trace becomes closer~vertical distance! to the hydrofoil as the gap
size is increased;~b! the trajectories in the 0.6 and 1.4 mm gaps
are continuous and do not show abump, i.e., a change in slope of
the vortex trace that is clearly evident in the case of the 2.6 mm
gap~Fig. 11~c!!; and~c! it is possible that the cause of this bump
is the interaction~merging! of multiple vortices. Note also the
outward trajectory of the bubbles in Fig. 8, this motion is most
likely associated with this complex flow structure.

4 Circulation of the Tip Leakage Vortex
Figures 12~a!–~f! show sample instantaneous vorticity and ve-

locity, in the inclined plane (x8y, Fig. 4~b!! with a vector spacing
of 180mm. Figures 12~b!, ~d!, and~f ! are the ‘‘zoomed in’’ coun-
terparts of Figs. 12~a!, ~c!, and~e! that correspond to gap sizes of
0.6, 1.4, and 2.6 mm, respectively. A section of the tip leakage

vortex can be seen within the dashed boxes for each of the gap
size. The object on the left in these maps is the hydrofoil with
portions of the trailing edge and tip visible. Since the local flow is
generated by an interaction of a wing tip with a turbulent bound-
ary layer, it is not surprising that instantaneous realizations con-
tain multiple vorticity peaks. However, unlike the tip leakage vor-
tex all the others are intermittent and appear in different locations
at different images. The tip vortex peak appears consistently al-
though its exact location varies slightly, which is vortex meander-
ing. Furthermore, clearly the tip vortex cores have substantially
higher overall circulation. Also, just below the hydrofoil~Fig.
12~a! and ~c! only!, we can see a trail of vortical structures that
are weaker than the primary leakage vortex. These secondary vor-
tices are similar to those seen by Farrell and Billet@11#. Figure
12~c! for the 2.6 mm gap shows a vortex core much closer to the
hydrofoil as expected from Fig. 11~c!.

We have analyzed 70 instantaneous realizations for the 0.6 mm
clearance and 65 for the 1.4 mm and 2.6 mm clearances. The
regions with peak vorticity where the tip leakage vortices dissect
the sheet were selected and regions with vorticity higher than 500
1/s considered to be part of the vortex core. The circulation was

Fig. 11 A 0.25 s long exposure showing the trajectory of the
bubbly tip leakage vortex as seen in a side view „Fig. 1 „b……, for
gaps of „a… 0.6 mm; „b… 1.4 mm; „c… 2.6 mm. Flow is from left to
right. The hydrofoil with its trailing edge and tip is visible on
the left edge of the images.

Fig. 12 Sample instantaneous vorticity „a, c, and e… and their
‘‘zoomed in’’ counterparts „b, d, and f… with instantaneous ve-
locity in the plane x 8y for gap sizes of 0.6, 1.4, and 2.6 mm,
respectively. The dashed boxes in the two views represent the
same area.
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computed fromG5Sv idAi , wherev is the vorticity in an el-
emental areadA(51803180mm2). The error in the circulation
of the vortex based on a mean value is approximately 20%. Prob-
ability density histograms of the measured circulation normalized
by the freestream velocity and chord length are presented in Fig.
13. It is evident that the characteristic vortex strength decreases as
the gap size increases. Table 4 shows the mean and standard de-
viation of the tip vortex strength. The mean circulation around the
foil deduced from Fig. 2~an increment of 0.1 has been added to
C1 for 1 deg incidence! is 0.23Vc, which is 3.3 to 5 times the
mean vortex strengths for the 0.6–2.6 mm tip gaps, respectively.

Figure 13 also shows the estimated pressure coefficients
(Cp min) at the center of a Rankine vortex,Cp min522/p2

(G/Vd)2 whered is the diameter of the vortex core. The vorticity
distributions show thatd mostly varies between 3–4 vector spac-
ings ~i.e., 540–720mm!. No significant differences in the core
sizes have been seen in the three gap sizes, although this statement
is greatly affected by the ‘‘coarse’’ resolution. Consequently, we
show the magnitudes ofCp min for d5540mm and 720mm as a
function of G. Values ofCp min , for a core diameter of 540mm,
corresponding to the mean vortex circulation and up to an addi-
tional three standard deviation levels are presented in Table 4. As

Fig. 13 Probability density histograms of circulation in the tip
leakage vortex for the three gap sizes and corresponding mini-
mum pressure coefficients.

Fig. 12 „continued …

Fig. 12 „continued …
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is evident theseCp min estimates are consistent with the corre-
sponding values ofs in Fig. 6. For the 2.6 mm gap, three standard
deviation levels are required to match the inception level cavita-
tion index that explains the steep slope of the curve in Fig. 6,
compared to the trends in the smaller gaps.

The locations of the vortex cores in all the instantaneous real-
izations~points of maximum vorticity in the cross section of the
vortex! are shown in Fig. 14~a!–~c! for the three clearances. All
show substantial meandering over ranges that are much larger
than the core size. The meandering increases with gap size. Even
in the 0.6 mm case where it is confined to a region with diameter
of 3.7 mm~in thex8y-plane!, the meandering range is 7.4% of the
chordlength. The vertical distance of the cores from the trailing
edge decreases as the gap size increases. On an average, this dis-
tance is 9.3, 8.75, and 5 mm, i.e., 18.6%, 17.5%, and 10% of the
chord length for the 0.6, 1.4, and 2.6 mm gap sizes, respectively.
These results agree with the vortex traces in Fig. 11. Similar
trends have been observed by Boulon et al.@12# who explain this
trend using a potential flow model. A vortex near a wall has an
‘‘image’’ that causes an induced velocity directed from the pres-
sure side to the suction side~downward in this case!. With de-
creasing gaps the induced velocity increases, increasing as a result
the y-distance of the vortex from the hydrofoil. The higher in-
duced velocity also increases the effective incidence angle, which
would in turn increase the lift.

5 Conclusion
Tip leakage cavitation is studied in detail on a fixed hydrofoil

with three tip gap sizes ofl50.12, 0.28, and 0.52. The cavitation
event rates decrease with increasing gap size. One of the main
findings of this paper is the relationship between visual appear-
ance of cavitation and the amplitude of the noise signals, i.e., what
really causes high cavitation noise? High-amplitude cavitation
noise is observed only when bubbles get highly distorted and frag-
mented. Much weaker signals~by an order of magnitude! are
observed when the bubbles merely change shape or size. Cavita-
tion noise is consistently observed in the 20–28 kHz and 5–8 kHz
range. High-resolution PIV data are used for measuring the circu-
lation and estimating the size and location of the tip leakage vor-
tex. One needs even better resolution to identify the correct size of
such vortex cores, but the results show a core size ranging from
540 mm–720mm. The vortex strength decrease with increasing
gap sizes. Minimum pressure coefficients calculated using a
Rankine vortex model and the measured strengths and core diam-
eters, lead to results that are consistent with the measured cavita-
tion indices. The tip leakage vortex trajectory moves closer to the
hydrofoil as the clearance is increased. Meandering of the vortex
core is substantial in all cases and increases with increasing clear-
ances.

Fig. 14 Locations of the tip leakage vortex cores in the plane
x 8y for gap sizes of „a… 0.6 mm „b… 1.4 mm and „c… 2.6 mm.

Table 4

Gap Size, mm„l… 0.6 „0.12… 1.4 „0.28… 2.6 „0.52…

Mean vortex strength,
(G/Vc)3100,Gm

7.56 6.12 4.59

Standard deviation,Gs 1.12 1.33 1.175
Cp min for Gm ,
(d5540mm/720mm)

210/25.5 26.5/23.7 23/21.8

Cp min for Gm1Gs ,
(d5540mm/720mm)

213/27.3 29.5/25.5 25.7/23.2

Cp min for Gm12Gs ,
(d5540mm/720mm)

216.5/29.3 213.2/27.5 28.3/24.8

Cp min for Gm13Gs ,
(d5540mm/720mm)

211.3/26.3

Cavitation inception
index from Fig. 6

11.5 10.1 9.0
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Effect of Swirl on Rotordynamic
Forces Caused by Front Shroud
Pump Leakage
Unsteady forces generated by fluid flow through the impeller shroud leakage path of a
centrifugal pump were investigated. The effect of leakage path inlet swirl (pump discharge
swirl) on the rotordynamic forces was re-examined. It was observed that increasing the
inlet swirl is destabilizing both for normal and tangential rotordynamic forces. Attempts to
reduce the swirl within the leakage path using ribs and grooves as swirl brakes showed
benefits only at low leakage flow rate.@DOI: 10.1115/1.1511164#

1 Introduction
Previous experimental and analytical results have shown that

discharge to suction leakage flows in the annulus surrounding a
shrouded centrifugal pump contribute substantially to the fluid
induced rotordynamic forces~@1,2#!. Experiments conducted in
the Rotor Force Test Facility~RFTF! at Caltech on an impeller
undergoing a predetermined whirl motion have shown that the
contributions to the normal and tangential forces from the leakage
flows can be as much as 70% and 30% of the total, respectively
~@3#!. Other experiments~@4#! examining the consequences of
leakage flows have shown that the rotordynamic forces are func-
tions not only of whirl ratio, but also of the leakage flow rate and
the impeller shroud to pump housing clearance. The magnitude of
rotordynamic forces were found to be inversely proportional to
the clearance. A region of forward subsynchronous whirl was
found for which the average tangential force was destabilizing.

Guinzburg et al.@5# examined the difference in rotordynamic
forces with and without a prescribed inlet swirl at entrance to the
leakage path. The tangential force increased in the presence of
inlet swirl, and hence the effect of inlet swirl was found to be
destabilizing. Uy and Brennen@6# continued the work and did a
parametric evaluation of the effect of inlet swirl. Later studies by
Sivo et al.@7# examined the effectiveness of antiswirl brakes in
reducing the destabilizing region of forward whirl.

Subsequent to the tests reported by Uy and Brennen, detailed
comparison of the leakage path pressure profiles strongly sug-
gested that the inlet swirl velocities were not consistent with the
inclination of the inlet swirl vanes as assumed by Uy and Bren-
nen. The present paper presents data in which the inlet swirl was
measured; this requires a reassessment of the effect of inlet swirl
on the rotordynamic coefficients. Also examined are the effects of
antiswirl brakes as well as antiswirl grooves within the leakage
pathway.

2 Rotordynamic Forces
Figure 1 shows a schematic of the hydrodynamic forces that act

on a rotating impeller whirling in a circular orbit. The unsteady
fluid forces~which are functions of rotor displacement! acting on
the impeller due to the imposed whirl motion~eccentricity «,
whirl frequencyV! are decomposed into a force normal to the
direction of whirl motion,Fn , and a force in the direction of
forward whirl motion,Ft . ~Force moments would also occur from
rotor displacement, see Tsujimoto et al.@8#.! The normal and tan-
gential forces are traditionally presented in dimensionless form as

functions of the whirl frequency ratio,V/v. Typical data forFn
andFt from the present measurements is shown in Fig. 2.

It is convenient for rotordynamicists to fitFn to a quadratic
function of the whirl frequency ratio,V/v, and to fit the dimen-
sionless tangential force,Ft , to a linear function as shown in Fig.
2. The appropriate expressions are

Fn5M S V

v D 2

2cS V

v D2K; Ft52CS V

v D1k (1)

where the dimensionless coefficients are the direct added mass
~M!, direct damping~C!, cross-coupled damping~c!, direct stiff-
ness~K!, and the cross-coupled stiffness~k!. It should be noted
that the fluid-induced forces may not always conform to these
simple functions of the whirl frequency ratio. However, this as-
sumption is common in the rotordynamics literature. Brennen@9#
and Jery@3# contain more detailed discussions of the derivation of
Eqs.~1!, and the process for experimentally measuring the forces.
In the present work all five force coefficients were directly evalu-
ated from the curve fits to the graphs ofFn andFt .

For rotor stability, a positive normal forceFn will cause the
eccentricity to increase and hence be destabilizing. From Eqs.~1!,
a large negative direct stiffness at zero whirl frequency (V/v
50) would correspond to such a case. WhenV/v is positive, a
positive tangential forceFt would also be destabilizing as this
would drive the forward whirl motion.

A convenient measure of the rotordynamic stability is the ratio
of cross-coupled stiffness to the direct damping~i.e., k/C) which
is conventionally termed the whirl ratio. This defines the range of
positive subsynchronous whirl frequency ratios, 0,V/v,k/C,
for which the tangential force is destabilizing.

3 Test Apparatus
The present experiments were conducted in the Rotor Force

Test Facility~RFTF! at Caltech@3#. The leakage flow test section
of the facility is schematically shown in Fig. 3. The intention is to
isolate the leakage flow forces by using a solid rotor and to gen-
erate the flow through the leakage path by an auxiliary pump. The
main components of the test section apparatus consist of the solid
rotor, a stator~the stationary shroud!, the rotating dynamometer
~or internal force balance!, an eccentric whirl mechanism and a
leakage exit seal ring. The working fluid is water. An inlet guide
vane is used for the tests with inlet swirl and is illustrated in Fig.
3.

The rotor is mounted directly to the rotating dynamometer,
which in turn is connected to a data acquisition system that per-
mits measurements of the rotordynamic force matrix components
~@3#!. The eccentric drive mechanism imposes a circular whirl
orbit on the main shaft rotation. The radius of the whirl orbit
~eccentricity! can be varied but this set of experiments used one
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eccentricity,«50.025 cm. The seal ring at the leakage exit mod-
els a wear ring. The clearance between the face seal and the im-
peller face is adjustable, but was set to 0.050 cm for these tests.
The tested leakage flow rate ranged up to 1.15 l/s. The tempera-
ture drift of the dynamometer electronics is postulated to be the
largest contributor to force measurement errors. The uncertainties
were evaluated experimentally and in all reported rotordynamic
force coefficients were 5% with the exception of the direct stiff-
ness,K, for which the uncertainty was 8%. The uncertainty in the
measurement of the flow rate was 1%.

The experimental configuration with the rotor and stator form-
ing the leakage path is shown in Fig. 3. The two rotor/stator con-

figurations referred to in this paper~the so-called conical and con-
toured rotor geometries! were described and used by Uy and
Brennen@9#. The present tests used primarily the contoured rotor
which has an eye-to-tip diameter ratio of 0.454, tip diameter of
18.73 cm, and an axial length of 4.29 cm. The rotor was designed
using a third-order polynomial with the contour parallel to the
centerline at the eye and perpendicular to the centerline at the tip.
The matching stator was constructed to maintain a constant clear-
ance,H50.30 cm, normal to the surfaces. The conical rotor has a
45-deg leakage path and has the same tip radius and the same
tip-to-eye diameter ratio as the contoured rotor. An axial clearance
device that models a face seal on a centrifugal pump is used. The
inner radius of the seal is 3.30 cm, and its clearance is set to 0.05
cm for all tests. The effect of inlet swirl was investigated by
installing guide vanes at the leakage inlet to introduce pre-rotation
in the direction of shaft rotation. Figure 3 shows a typical vane
consisting of a logarithmic spiral channel with a turning angle of
six deg. A series of vanes with anglesa51 deg, 2 deg, and 6 deg
were fabricated. The swirl ratio,G ~the ratio of the leakage flow
circumferential velocity to the impeller tip velocity at inlet to the
leakage path! is varied by changing the inlet leakage flow rate and
the turning angle. Another inlet guide plate with a set of 24 radial
vanes designed to eliminate inlet swirl. The swirl ratio depends on
the flow coefficient and turning angle,a, according toG/f
5H/B tana whereB50.318 cm is the width of the logarithmic
spiral channel. A derivation of this relation~which assumes all
leakage flow is constrained to follow the vane! is found in Guin-
zburg et al.@5#. The relation was assumed by Uy and Brennen@6#
in their presentation of the effects of inlet swirl on rotordynamic
forces.

However, during investigations of the leakage flow field, ques-
tions arose concerning the inlet velocities to the leakage path. One
source of these questions were comparisons between experimen-
tally measured leakage path pressure distributions and those cal-
culated theoretically. We digress here to cover this issue.

4 Leakage Path Pressure Distributions
We present the pressure profile comparisons which led to the

need for inlet swirl measurements~for full details see@10#!. The
pressure profiles inside the leakage path were examined both ex-
perimentally and computationally for the conical impeller fitted
with the inlet guide vanes. The computations were done using the
new vorticity method for solving the Childs’ bulk flow equations
~@10#!. ~Using the original Childs’ perturbation method yields
qualitatively similar results.! Pressure taps drilled through the sta-
tor of the conical impeller provided water manometer measure-
ments for profiles of three different flows,f50.043, 0.054, and
0.065, using the 6 deg inlet guide vane, which was designed to
provide inlet swirl ratios of 0.4, 0.5, and 0.6, respectively, at each
of those flow rates. Experiments were conducted with the rotor
eccentric but not whirling (V/v50). The resulting pressure co-
efficient distributions are presented in Fig. 4; it can be seen that

Fig. 1 Schematic of the fluid-induced forces acting on an im-
peller whirling in a circular orbit

Fig. 2 Typical nondimensional data for Fn and Ft from the cur-
rent experiments as functions of the whirl frequency ratio VÕv
„data for contoured rotor with inlet swirl at fÄ0.043…

Fig. 3 Schematic of the experimental facility showing the rotor
and stator assembly „left …, the aÄ6 deg inlet guide vanes
„right … and the location of the Pitot tubes

Fig. 4 Comparison of the experimental measurements „Ã… of
the pressure coefficient „Cp… profiles in the leakage path for
fÄ0.043, 0.054, and 0.065 with the calculated profiles for inlet
swirl ratios of 0, 0.27, 0.4, and 0.5
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the experimental pressure profiles, referenced to the pressure at
inlet to the leakage path, are nearly identical for the three flows.
Computationally the inlet swirl was the only parameter which
affects the pressure profile significantly. As seen in Fig. 4, in all
three flows the pressure profiles are best matched by setting the
inlet swirl ratio in the computations to 0.25–0.27 of the rotor tip
speed. This finding motivated the inlet swirl measurements and
confirmed the suspicion that the inlet swirl was nearly the same
for all of the inlet guide vanes regardless of the flow rate. Since
there are only slight differences in the inlet structure of the conical
and contoured rotors, the same conclusion applies to the con-
toured rotor.

5 Inlet Swirl Measurements
Motivated by the preceding results, Pitot tubes were installed to

measure the flow velocities at inlet to the leakage path. Consider-
ations were given to using five-hole Pitot tubes. This was not
done, however, for several reasons. The flow velocities are likely
to vary with distance from the walls. This would mean that several
measurements at different distances from the walls would be
needed to accurately assess the flow, a difficult feat considering
the narrow spaces in the apparatus. In addition the flow is un-
steady and highly disturbed, making the accuracy of the flow
angle measurements a concern. Because of this, it was decided
that a cruder measurement of the velocity in the tangential direc-
tion would suffice for the purposes of ascertaining the inlet flow
conditions to the leakage path.

The stator had two holes drilled for insertion of the Pitot tubes,
as shown in Fig. 3. The Pitot tubes were placed immediately after
the exit of the inlet guide vanes and before the entrance to the
leakage path, a gap of approximately 0.8 cm normal to the axis of
rotation. Normally one would have the diameter of the Pitot tube
be less than one quarter of the gap. The Pitot tubes were fabricated
from 0.3 cm diameter stainless steel tubing. Their diameter is
therefore comparable to the leakage path clearance and the width
of the inlet guide vanes. The tubes were connected to the set of
water manometer mentioned earlier for stagnation pressure read-
ings. Existing pressure taps next to the Pitot tubes were used for
static pressure measurements. The difference between the readings
is the velocity head of the flow in the direction facing the Pitot
tube.

In most of the tests only the swirl velocity was measured by
setting the Pitot tubes tangent to the circumference. Changing
their orientation to face the flow directly did not change the mea-
surements, as the difference was within the uncertainties. Because
of the large diameter of the Pitot tubes compared to the gap width,
the measured velocities are likely to be some average value of the
velocity in the circumferential direction near the inlet to the leak-
age path. Though the measurements of the swirl velocity may be
imprecise, confidence in the results was bolstered by the agree-
ment between the measured pressure profiles and those calculated
using the measured inlet swirl~@10#!.

Figure 5 shows that the inlet swirl vanes did not work as de-
signed; they almost all provided about the same inlet swirl. On the
other hand, the radial vanesdid prevent inlet swirl at higher flow
rates. These velocity measurements are consistent with theoretical
predictions from the bulk flow model~@10#!. It is postulated that
inside the small clearance in the guide vane structure, viscous
forces dominate and they act to slow the flow in the circumferen-
tial direction and expel the fluid in a more radial manner at the
exit from the guide vanes. Also some mixing may occur inside the
region between the end of the inlet guide vanes and the beginning
of the leakage path and would reduce the effects of inlet swirl
vanes.

Since the entrance regions of the contoured and the conical
geometries are very similar, there is no reason to expect their inlet
swirls would be different.

6 Effects of Inlet Swirl
Uy and Brennen@6# performed a set of experiments to deter-

mine the effects of inlet swirl on the unsteady rotordynamic forces
on the contoured impeller. Different inlet swirl angles were em-
ployed to alter the inlet swirl ratio, and a swirl vane with radial
channels was used to generate data for zero inlet swirl. The flow
coefficients ranged fromf50.01 to 0.066 using flow rates from
0.17 to 1.15 l/s at 1000 rpm. The Reynolds numbers forf
5.055 were Rev527170 and Reus

51494. Uy and Brennen as-
sumed the inlet swirl was consistent with the angles of the inlet
guide vanes and therefore published Fig. 6, which showed that for
nonzero inlet swirl, the magnitude of the inlet swirl,G, did not
affect the rotordynamic forces.

However, the later comparison of pressure profiles led to ques-
tions concerning the accuracy of the assumed inlet swirl in the
experiments~@10#!. Subsequently, the Pitot tube measurements of
inlet swirl velocities did show that the assumed swirl velocities
were indeed incorrect. Figure 7 presents the corrected experimen-
tal data, showing only two inlet swirl ratios, evaluated using the
correct, measured values of the swirl. It shows that the effect of
swirl is destabilizing, asK becomes larger in negative magnitude
and k/C increases. The coefficients representing the tangential
forces,C and k, become larger with increasing swirl. At higher
flow coefficients,f.0.03, no discernible trends can be observed
in the rotordynamic coefficients for constant swirl.

However, the general comments made by Uy and Brennen on
the effect of swirl are still valid. For the coefficients which deter-
mine the normal force,M, c, and K, the added mass does not
exhibit an appreciable difference in the cases with and without
swirl. The magnitude of the direct stiffness is higher and the mag-
nitude of the cross-coupled damping is smaller with no inlet swirl.
In summary, the circumferential fluid velocity induced by inlet
swirl affects the rotordynamic behavior significantly, especially
the whirl ratio, which defines the range where tangential forces
are destabilizing.

The combined effect of inlet swirl and leakage path geometry
was also investigated. Figure 8 presents the rotordynamic force
coefficients for both the contoured and conical leakage path ge-
ometry, updated with the measured inlet swirls. The coefficients of
the normal force appear to be similar, but there are significant
differences in the trends and magnitudes of the cross-coupled
stiffness and direct damping, leading to substantial differences in

Fig. 5 Experimental inlet swirl ratio versus flow coefficient f,
with 6-deg inlet swirl vanes at 500 rpm „L…, 1000 rpm „h…, with
2-deg swirl vanes at 500 rpm „n…, 1000 rpm „s…, and with radial
vanes at 1400 rpm „Ã… and 1000 rpm „* …

Journal of Fluids Engineering DECEMBER 2002, Vol. 124 Õ 1007

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the whirl ratio. The contoured rotor exhibits an increasing whirl
ratio with increasing flow rate, while the conical rotor exhibits the
opposite trend.

7 Antiswirl Ribs and Grooves
We now shift attention from inlet swirl to swirl reduction in the

leakage path by vanes installed within the passage. Previous in-

vestigations~@7#! demonstrated some benefits from fitting anti-
swirl ribs to the surface of the stator; they decreased the destabi-
lizing forces. The inner surface of the conical stationary shroud
was designed to accept meridional ribs or swirl brakes along the
length of the leakage path. As shown in Fig. 9, four equally
spaced ribs, 0.5 cm wide and 0.16 cm high, were installed for
these tests. The effectiveness of cutting grooves on the stator sur-

Fig. 6 Experimental rotordynamic coefficients for the contoured rotor plotted
against flow coefficient, f, for tests with inlet swirl, GÄ0.0 „n…, 0.4 „¿…, 0.5
„Ã…, 0.6 „s… and 0.7 „* … „presented by Uy and Brennen †6‡ and here shown to
be inaccurate …

Fig. 7 Experimental rotordynamic coefficients for the contoured rotor plotted
against flow coefficient, f, for tests with inlet swirl, GÄ0.0, „s… and 0.26 „Ã…
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face was also examined; the grooves duplicated the height and
width of the brakes.

With a rotating impeller, fluid swirl is obviously generated in
the leakage path, and the question arises as to how reducing this
swirl will affect rotordynamic forces. Therefore, the effects of
antiswirl ribs and grooves in the leakage path were investigated.
Work by Sivo@7# identified some benefits to having antiswirl ribs
in the leakage path, but only for very small flow coefficients.

Figure 10 shows the rotordynamic force coefficients as func-
tions of the flow coefficient for the conical impeller and shroud.
The tests were conducted with a 2-deg inlet swirl vane and com-
pare the effects of antiswirl ribs and grooves.

Note that the magnitude of the direct stiffnessK is smallest for
the tests with no antiswirl devices. Thus in so far as the direct
stiffness is concerned, the stability improves with grooves and
even more with antiswirl ribs. However the cross-coupled damp-
ing coefficient does not show such changes, and the added mass
remains about the same for all three cases.

The direct damping of the tangential forces has the same mag-
nitude for all three cases, while the cross-coupled stiffness exhib-
its different trends. It decreases with flow coefficient with no swirl
reduction devices, and increases in the presence of antiswirl ribs.
With grooves, the cross-coupled stiffness first increases and then

decreases with flow coefficient. This leads to improvements in the
whirl ratio for antiswirl devices at low flow coefficients, but to a
detrimental effect at higher flow rates. The whirl ratio for the case
with antiswirl ribs is increasing with flow coefficient, in marked
contrast to the decreasing trend when no antiswirl devices are
present.

Thus it seems that antiswirl devices provide some benefit in
reducing the destabilizing region in the tangential forces only for
very small flow rates. They contribute to an increase in direct
stiffness, helping the stability of normal forces.

8 Discussion
Experimental data show that as with annular seals, the rotordy-

namic forces from front shroud leakage flows in pumps are sig-
nificantly affected by inlet swirl; an increase in the inlet swirl is
destabilizing for both the normal and tangential forces. This ob-
servation agrees qualitatively with trends predicted from bulk flow
computations. Reduction of inlet swirl provides significant ben-
efits for rotordynamic stability.

As the effects of inlet swirl are destabilizing, reducing the swirl
inside the leakage path might seem a beneficial strategy. The re-
sults, however, were mixed. At lower flow coefficients, swirl re-

Fig. 8 Experimental rotordynamic coefficients plotted against flow coefficient
f for tests with inlet swirl with the contoured rotor „h,GÄ0.27… and the conical
rotor „Ã,GÄ0.27…

Fig. 9 Swirl reduction devices
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duction offered some benefit. However, at higher flow rates, the
antiswirl devices reduced the unstable normal forces but increased
the destabilizing tangential forces.

Nomenclature

B 5 width of inlet channel and swirl vane
C 5 direct damping normalized byrpvR2

2L
Cp 5 pressure coefficient,Dp/rv2R2

2

c 5 cross-coupled damping normalized byrpvR2
2L

Fn 5 force normal to whirl orbit/rpv2R2
2L«

Ft 5 force tangent to whirl orbit/rpv2R2
2L«

H 5 clearance between impeller shroud and housing
K 5 direct stiffness normalized byrpv2R2

2L
k 5 cross-coupled stiffness normalized byrpv2R2

2L
k/C 5 whirl ratio

L 5 axial length of the leakage path
M 5 direct added mass normalized byrpR2

2L
Q 5 volumetric leakage flow rate

R2 5 radius of rotor and leakage path inlet, 9.366 cm
Rev 5 Reynolds number,R2vH/n
Reus 5 Reynolds number,usH/n
Reuu 5 Reynolds number,uuH/n

us 5 mean leakage throughflow velocity,Q/2pR2H
uu 5 mean swirl velocity at the leakage path inlet
a 5 angle of logarithmic spiral swirl vane

Dp 5 static pressure minus pressure at leakage inlet
G 5 leakage inlet swirl ratio,uu /vR2
« 5 eccentricity of whirl orbit
n 5 kinematic viscosity

r 5 fluid density
f 5 leakage flow coefficient,us /vR2
v 5 main shaft radian frequency
V 5 whirl radian frequency

V/v 5 whirl frequency ratio
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Cavitation in Hydraulic Tools
Based on Thermodynamic
Properties of Liquid and Gas
The simulation of cavitation phenomena plays an important role for development of
modern hydraulic tools and injection systems. Cavitation leads to a reduction of mass
flow and influences the wave motion in hydraulic components significantly. The article
deals with the simulation of a homogeneous cavitation model based on thermodynamic
properties of the liquid and steam to understand basic physical phenomena.
@DOI: 10.1115/1.1514200#

1 Introduction and Modeling Equations
The simulation of cavitated flows is necessary to prevent dam-

ages and to understand the time-dependent properties in the early
development phase of hydraulic tools. Fast working valves induce
strongly time-depending high and low pressure levels. The large
range of temperature and the low pressure levels can lead to
evaporation of the oil in the hydraulic pipelines and valves. The
evaporation leads to a significant reduction of the speed of sound
in the mixture, reduces the mass flow, and influences the working
properties of valves. The condensation of the vapor bubbles can
lead to noises and damages in the hydraulic components. In order
to understand the complex physical processes and to protect tech-
nical tools from cavitation erosion, numerical simulations can be
very helpful.

Many papers deal with these topics, see, for example@1–4#. In
general, a combination of continuous and discrete models are
used. The flow is described with the Euler or the Navier-Stokes
equations which represent the continuous model. The cavitation is
modeled by discrete bubble models where oscillations of single
bubbles or bubble clouds are considered,@3–6#. The numerical
handling of these approaches is very difficult for flows with high
pressure gradients. Many model parameters which can hardly be
obtained by experiments make a study of basic phenomena time
consuming and uncertain. Oscillations of bubbles are based on the
mechanical nonequilibrium, i.e., the pressure of the liquid phase
differs from the pressure of the gas/steam phase which depends on
the surface tensions, viscosityn, and the diameter of the bubbles.
These approaches combine microscopic and macroscopic effects.
To simulate flows in pipes which caused by shock or rarefraction
waves, numerical schemes of high order are necessary to resolve
the model based oscillations of the pressure which leads to enor-
mous numerical costs,@3#. In this paper we are only interested in
macroscopic effects combined with robust numerical schemes.
Consequently, a homogenous two-phase model is used which is

based on a thermodynamic and mechanic equilibrium model in
the first step. The numerical studies show that the chosen model
allows to analyze the wave motion in pipes with cavitation by
robust numerical schemes.

Pioneering works on one-dimensional two-phase flow were
published by Wallis@7# and Kolev @8#. Cavitating flows can be
described by several models with different model levels. The first
approach is to start with the conservation equations of the homo-
geneous mixture~barotropic model! which have been done in
@1,9#. Here, the evaporation and condensation process is described
by a thermodynamic equation of state. This approach can lead to
stability problems due to the large variable range of mixture den-
sity and propagation speed. In Beck@10# a combination of an
explicit and local implicit scheme is used to avoid the stability
problems. The next step is to split the continuity equation for the
gas and liquid phase and to couple it by a source term which was
done in @11# for isotropic flow. The equation of energy was ne-
glected. It can be shown analytically, that this approach is equiva-
lent to the approach using the mixture equations,@12#. The next
step is to consider the energy equation for the homogeneous mix-
ture in connection with thermodynamic equilibrium or nonequi-
librium models for the phase transient and additional heat flux.
The homogeneous and inhomogeneous modeling equations
adapted to the special problem of cavitated flow in pipes with a
variable cross-sectional area were derived and partially investi-
gated in@12#.

The presented model was validated on an exact solution of a
Riemann problem using the corresponding barotropic model, see
Section 3.

Every natural liquid contains undissolved and dissolved air. The
undissolved air appears as small bubbles in the fluid, which can be
considered as cavitation nuclei. If the pressure decreases below
the saturation pressure, the dissolved air releases. This so-called
gas cavitation is a diffusion process which will not be considered
here. We assume that the fluid contains a fixed mass of undis-
solved air which influences the properties, e.g., the speed of
sound, of the liquid-gas mixture. Particularly, it comes apparent
for small pressure values, see@7,12#.

The notation used in the paper is the following: The indexG
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denotes the gas and steam phase, the indexL denotes the liquid
phase. The physical values of the mixture are written without an
index.

The velocity of fluid and gas/steam in a pipe is approximately
the same, so a homogeneous mixture is considered, i.e., the ve-
locity of the gas is equal to the velocity of the liquid. This as-
sumption makes sense for acoustic cavitation. The cavitation ap-
pears as small bubbles or steam clouds. Further, we assume the
steam to be equally distributed within the computational cells.
Note, that due to the wave motion in a pipe, the fluid cannot
evaporate completely. For this reason, the mass fraction of steam
is strictly smaller than one. The mass fraction is defined bym, the
volume fraction is defined by«, i.e.,

m5
mG

m
and «5

VG

V
.

The mixture density is given by

r5«rG1~12«!rL or
1

r
5

m

rG
1

12m

rL
. (1.1)

The modeling equations are derived in@11,12#. The homoge-
neous two-phase Euler equations in one space dimension consist-
ing of the continuity equations for each phase, the momentum
equation for the mixture, and disregarding the energy equation are

]

]t
~«rG!1

]

]z
~«rGv !5G,

]

]t
~12«!rL1

]

]z
~12«!rLv52G, (1.2)

]

]t
rv1

]

]z
~rv21p!5rF with F52

l invuvu
2d

.

The source termG describes the evaporation and condensation
process of cavitation. The friction force is defined as a function of
the shear stress on the wall, where the friction factorl in is a
function of the Reynolds number, and the relative roughness of
the pipe,@13#. It is assumed that the friction forces for the liquid
and gas/steam are the same. The valued denotes the diameter of
the pipe. We assume that the entropy is nearly constant. For a flow
without a phase transient this assumption is satisfied. Only strong
shocks of a pressure range larger than 3000 bar lead to a signifi-
cant increase of entropy, see@12#. For small cavitation zones in
pipes, the increase of entropy can be neglected as well.

Following @14#, the number of partial differential equations
used in existing one-dimensional models varies between three
conservation equations for the mixture and five conservation
equations for each phase separately. The splitting of the mass
conservation equation in~1.2! was chosen to avoid stability prob-
lems if using the homogeneous mixture model and must be used
for nonequilibrium models. The pressure is a function of density
and temperature which is given just in an implicit formulation.
This is a main difference to the modeling of problems from gas
dynamics. A system of nonlinear equations has to be solved in
each time-step in order to compute the primitive variablesp and«
from the conservative variables

u15«rG , u25~12«!rL and u35rv

which are used to solve the system~1.2! numerically.
A model for the source termG is not easily to derive, see

@11,12,15#. If we consider just the gaseous phase in a one-
dimensional flow, the mass conservation law can be written as
follows:

]

]t
~«rG!1

]

]z
~«rGv !5r

dm

dt
5G. (1.3)

The valueA denotes the cross-sectional area of the pipe which
remains constant in our case, andDz the length of each discreti-

zation. Note that the mass exchange on the right-hand side of Eq.
~1.3! must be the substantial derivative of the gaseous mass be-
cause the mass exchange is strongly coupled to the fluid elements.
A similar procedure leads to the continuity equation for the liquid
phase

]

]t
~~12«!rL!1

]

]x
~~12«!rLv !52r

dm

dt
. (1.4)

Note, that the summation of Eqs.~1.3! and ~1.4! holds the conti-
nuity equation for the mixture. The system~1.2! will be abbrevi-
ated by~2.14!

]

]t
u1

]

]z
f~u!5g~u! with u5~u1 ,u2 ,u3!T. (1.5)

In order to use numerical schemes of high accuracy, the Jaco-
bian of the flux functionf has to be computed. Following@12,11#,
the eigenvalues are

l15v2c, l25v, and l35v1c, (1.6)

wherec is the speed of sound for the homogeneous mixture. The
eigenvaluesl1 andl3 represent the characteristics of the system
~1.2!. The eigenvaluel2 represents the path. For fixed mass frac-
tion m the speed of sound can be computed by,@7#,

1

rc2 5
«

rGcG
2 1

~12«!

rLcL
2 . (1.7)

The Eq.~1.7! first was conducted by Wallis, see@7#. To derive
~1.7!, we have usedp5p(u11u2) and additionally

]p

]u1
5

]p

]r

]r

]u1
5c2,

]p

]u2
5

]p

]r

]p

]u2
5c2.

The Eq.~1.7! can be derived in different ways, see@7# and@12#.
The eigenvectors offu are

r15S 1
12m

m
v2c

m

D , r25S 21
1
0
D , and r35S 1

12m

m
v1c

m

D .

(1.8)

Note that we have to guarantee that 0,m<1, otherwise the
eigenvalues are degenerated. As mentioned in the Introduction, an
initial mass fraction of undissolved air is given, so that the re-
quired assumption is satisfied. To solve~1.2! numerically, the
first-order HLL scheme in connection with operator splitting is
used. The computational domain@20.5,0.5#3@0,T# is equidistant
spaced, i.e.,

20.55z0,z1,¯,zi,¯zN21,zN50.5 with Dz5zi 112zi

and

05t0,t1,¯,tn,¯,T with Dt5tn112tn.

Further, we introduce the notation

ui
n5S u1,i

n

u2,i
n

u3,i
n
D with uk,i

n 5uk~zi ,tn!, k51,2,3.

According to Toro@16#, the homogeneous hyperbolic equation
can be discretized as follows:

ui
n115ui

n1
Dt

Dz
~Fi 21/2

HLL 2Fi 11/2
HLL !. (1.9)

The numerical flux functionsF are defined by
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Fi 11/2
HLL 5

aR,i 11
n f~ui

n!2aL,i
n f~ui 11

n !1aL,i
n aR,i 11

n ~ui 11
n 2ui

n!

aR,i 11
n 2aL,i

n

(1.10)

Fi 21/2
HLL 5

aR,i
n f~ui 21

n !2aL,i 21
n f~ui

n!1aL,i 21
n aR,i

n ~ui
n2ui 21

n !

aR,i
n 2aL,i 21

n

(1.11)

In this context,aR,i
n denotes of the greatest propagation speed and

aL,i
n the smallest propagation speed in the computational celli,

and are set tol3 , respectively,l1 ; see Fig. 1, as long as they are
estimations of the propagation speeds. An underestimation of
these values can lead to oscillations and occurs if the eigenvalues
l i are less than the physical shock wave propagation speed. Es-
pecially at condensation processes, it turned out that oscillations
in the numerical scheme often occurs,@9,11#. In order to avoid
these numerical instabilities, at condensation processes the dis-
crete propagation speed is locally set to the so-called grid speed
Dz/Dt with the correct sign of propagation.

This means that the estimated propagation speed is locally in-
creased to the largest speed that is possible. The technique is often
used for processes with strongly variable propagation speeds, see
@17,18#. The valueDt is computed by

Dt5lCFL

Dz

maxk,i ulk,i
n u

, k51,2,3.

The valuelCFL denotes the so-called CFL number. Finally, the
ordinary differential equation

ut5S G
2G
rF

D (1.12)

is solved to get a numerical solution for~1.2!. Note that~1.12! has
not to be solved for a flow with constant mass fractionm and
neglected frictionF50.

2 Thermodynamic Model for the Source Term
In order to receive results for the Eqs.~1.2! the system must be

closed. Therefore one of the unknowns must be modeled and ex-
pressed in other physical properties. In this work we decided to
model the mass fraction due to evaporation and condensation in a
thermodynamic way. Following@12#, the mass fraction can be
computed by

dm

dt
5

1

h9~p!2h8~p! S dh9

dp
2

1

rL
1mS dh9

dp
2

1

rG
D

2mS dh8

dp
2

1

rL
D D dp

dt
. (2.13)

For a small mass fractionm, the following approximation

m~p!5
h~pevap!2h8~p!

h9~p!2h8~p!
(2.14)

can be used instead of~2.13! which is equivalent todh50, i.e.,
the evaporation and condensation processes are isenthalpic. Due
to pressure losses or refraction waves,@9,11#, the fluid reaches the
vapor pressurepevap and starts to evaporate on a path of constant
enthalpy. The maximum amount of heat that can be received due
the vaporization process isDh5h9(p)2h8(p). The local mass
fraction m of steam is directly coupled with the pressure distribu-
tion of the fluid-gas mixture by this approach. This is a conse-
quence of the mechanical and thermodynamic equilibrium model
considered here. The given model leads to the largest mass frac-
tion of steam compared to the nonequilibrium cavitation models
derived in @12,19#. The equilibrium model~2.14! does not con-
sider surface tensions, viscosity, or overheating effects which can
be observed in real processes. The presented model can be used
for studies of cavitation processes and basic phenomena of two-
phase flows which will be described in the last section. To study
more detailed effects of cavitation, the energy equation has to be
considered.

Therefore the source termG used in the approach~1.2! can be
transformed to

G5r
dm

dp S ]p

]t
1v

]p

]zD .

This representation allows us to use the functionm(p) directly
from ~2.13! or ~2.14!. We have chosen the Eq.~2.14!. The differ-
ences of mass fraction computed by~2.14! with respect to~2.13!
are less than 1025 for the processes considered in the next section.

For the thermodynamic equation of steam the ideal gas law is
used, i.e.,p5rGRH2OT. The equations of Van der Waals, Bene-
dict, Weber, and Rubin, Redlich and Kwong, and Hirschfelder,
Buehler, McGee, and Sutton,@20,21#, could be used quite as for
the steam phase. For the fluid, the properties of waterrL
5rL(p,T), derived by Wagner et al. are used,@22#. These func-
tions can also be used to compute the mass fraction of steam for a
given pressureptr,p<pevap and temperatureT, where ptr de-
notes the triple point of the fluid,@23#. For ptr,p<pevapthe den-
sity of the fluid is fixed by constant because the density function
of Wagner et al. represents the mixture density for this range.

The discretization of~1.12! is done in the following way:

G i
n5r i

n11/2
dm

dpU
i

n11/2S pi
n11/22pi

n

Dt
1v i

n
pi 11

n11/22pi 21
n11/2

2Dz D ,

(2.15)

where the derivative of the mass fraction by the pressure can be
derived analytically by~2.14! for the full time-stepDt. The physi-
cal values denoted withn11/2 are the result of the homogeneous
hyperbolic problem~1.5! for g50. On the boundaries of the com-
putational domain there was no need to replace central discretiza-
tion of the pressure gradient because we used dummy cells there.

The extension of the presented model to other fluids is quite
simple. One has to measure the steam pressurepevapas a function
of the pressurep and temperatureT. Further, the evaporation en-
thalpy has to be measured by experiments for the fluid.

3 Validation and Numerical Examples
As numerical examples we use Riemann problems as test cases.

The Riemann problem consists of the hyperbolic system~1.2! and
two constant states as initial data, which are separated by a dis-
continuity. It is a generalized shock tube problem. The solution of
this problem has a relatively simple structure including shocks
and rare faction waves. Because it can be calculated explicitly
these problems are very useful for validation purposes,@16#.

Fig. 1 Propagation speeds
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Fig. 2 Comparison of the pressure and velocity distribution for a Riemann problem with p L
Ä100 bar and p RÄÀ0.15 bar at tÄ0 s, with †9‡ and an exact solution

Fig. 3 Pressure distribution and mass fraction for different temperatures at tÄ100 ms

Fig. 4 Volume fraction and velocity distribution for four different temperatures at tÄ100 ms
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For the validation of the numerical scheme the equations of
state from@9# are used. For this equation system one can obtain an
analytic solution of the Riemann problem which is presented in
Fig. 2. The values at the beginning of the calculation differs only
in the pressure on the left and the right side of the Riemann
problem, i.e.,pL5100 bar andpR520.15 bar. There is no physi-
cal inconsistency because the calculations was made with an pres-
sure offset of 1.013 bar. With this values there is pure liquid on the
left side and vapor on the right side at the start of calculation. The
character of this solution is a right running shock wave and a left
running expansion wave. Due to the small compressibility of the
fluid the expansion fan is very thin compared to the ones occur-
ring in a gas. The right running wave leads to a condensation of

the vapor. The source termG describes the time-depending change
of the mass fraction due to pressure increase. The evaporation
process caused by pressure decrease is modeled by the same
source term. Thus the source term works for the evaporation and
as well as for the condensation correctly.

In Fig. 2 a very good agreement with the exact solution can be
observed. Furthermore, although Beck et al.@9# used the same
numerical scheme for their computations the solution oscillates
behind the shock wave. In our current computations this phenom-
enon can be avoided just be splitting the equation of mass conser-
vation.

We consider a pipe of one meter length with a constant cross-
sectional areaA for our own computations. For the first example,

Fig. 5 Pressure distribution and mass fraction for different initial pressure at tÄ250 ms

Fig. 6 Volume fraction and velocity distribution for different initial pressure at tÄ250 ms

Table 1 Initial values for Riemann problems at tÄ0 s

pleft @Pa] v left @m/s] pright @Pa] v right @m/s] T @K#

Case 1 105 21 105 1 293.15
Case 2 105 21 105 1 313.15
Case 3 105 21 105 1 333.15
Case 4 105 21 105 1 353.15

Table 2 Initial data for Riemann problems at tÄ0 s

pleft @Pa] v left @m/s] pright @Pa] v right @m/s] T @K#

Case 5 107 0 105 0 313.15
Case 6 106 0 104 0 313.15
Case 7 105 0 103 0 313.15
Case 8 104 0 103 0 313.15
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the ends of the pipe are open, for the second example the ends are
closed by rigid walls. The pipe is full filled with a liquid-gas
mixture. The mixture is defined by the thermodynamic properties
given in the previous section.

Example 1: The following table gives the values fort50. We
neglect the friction forces, i.e.,F50. The CFL number is fixed by
0.95 for each computational step and consequentlyDt is com-
puted in each time step again. The initial mass fraction of undis-
solved air is fixed bym051028 which is constant for the com-
plete simulation time. This assumption is also valid for the second
case.

The first case can be interpreted as follows: the gas-liquid mix-
ture flows with constant velocity in a pipe. Suddenly, one side of
the pipe~at z50) is completely closed which corresponds to an
infinitely fast closing valve. Consequently, due to the inertia of the
fluid, the pressure drops below the steam pressure. So, the fluid
starts to evaporate. Because boundary conditions for closing
valves are not implemented in the code, the initial conditions are
chosen as presented. The pointz50 can be considered as a sym-
metry point in out example.

The Figs. 3 and 4 contain the plots of pressurep, volume frac-
tion «, mass fractionm, and velocityv for the parameter set of
Table 1.

Due to the initial conditions, the fluid starts to evaporate and the
maximum of the mass fractionm is quite different for each case.
Further the pressure in the cavitated area drops hardly below the
steam pressure. The steam pressurepevap depends on the initial
temperatureT. On the other hand, the volume fraction« is nearly
equal distributed for the four cases. This effect has a great mean-
ing for experimental investigations. The volume fraction is the
physical property which is visible in experiments. One can only
draw a conclusion from the volume fraction« to the mass fraction
m by the knowledge of temperatureT and pressurep at the corre-
sponding place.

Example 2: For this example, the ends of the pipe are
closed. As boundary conditions, reflection is assumed and imple-
mented as suggested in Toro~@16# pp. 210–212!. The Riemann
problem is defined by different pressure values on the left and the
right side of the assumed symmetry line atz50. We are interested
in the simulation of the wave motion starting with different initial
data.

The temperature is constant for each data set. As shown in Fig.
5, the speed of sound and consequently the positions of shock
waves strongly depend on the mass fraction of gas/steam.

The Figs. 5 and 6 contain the physical properties of the Rie-

mann problem one of Table 2. They show their distributions after
t5250ms before the waves have reached the walls. Figure 7
shows the pressure and the volume fraction of case 5 after the
waves were reflected on the walls att5750ms.

Conclusion
In this paper, a homogeneous cavitation model on the basis of

the mechanical and thermodynamic equilibrium is introduced. The
simulations of cavitating flow are connected to several difficulties
which are the large range of mixture density and speed of sound.
In connection with the described stabilization technique and the
operator splitting method, cavitated flow can be simulated suc-
cessfully. In contrast to@9# a continuity equation for each phase is
used. This approach does not lead to oscillations behind the shock
wave in contrast to the approach using one equation for the con-
servation of mass.

The next step is to add more physical properties of the cavita-
tion process, i.e., to add the energy equation to the model~1.2!
and to use more detailed source terms for the phase transition and
momentum correlation as derived in@19,24#.
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Visualization of Shear Stress With
Micro Imaging Chip and Discrete
Wavelet Transform
The two-dimensional low-speed structure of a turbulent boundary layer has been clearly
visualized by a combination of a shear stress sensor using micro electro mechanical
systems and the discrete wavelet transform. The application of two-dimensional discrete
wavelet transforms to the visualization of wall shear stress data obtained using the micro
shear stress imaging chip is described. The experiment was carried out under various
Reynolds number conditions. It is shown that it is possible to visualize the low-speed
streak structure as contours of two-dimensional wavelet level corresponding to spanwise
wave number as a function of Reynolds number.@DOI: 10.1115/1.1516599#

1 Introduction
The presence of near-wall shear stress streaks in turbulent

boundary layers has been observed in flow visualization investi-
gations,@1–5#. These streaks are typically very small at high Rey-
nolds ~Re! numbers and can not be properly resolved by tradi-
tional measurement techniques. Numerical simulations indicate
that the streaks are associated with streamwise vortices in the
viscous sublayer. The rotational motion of these vortices imposes
high fluctuation surface shear stresses on the wall,@6#. Several
techniques have been proposed for measuring shear stresses. The
hot-film technique and its variants have been widely used in de-
tailed investigations of fluctuating wall shear stress,@7,8#. The
direction-sensitive laser Doppler anemometer is a technique that
enables for the evaluation of both the magnitude and direction of
the wall shear stress. The optical method proposed by Naquwi@9#
is capable of measuring the wall shear stress at a high spatial
resolution. However, an instrument with a fine spatial resolution,
fast frequency response and high sensitivity for turbulent bound-
ary layer research has not yet been developed.

The recent development of the micro electro mechanical sys-
tems ~MEMS! manufacturing process has offered the possibility
of sensing and controlling small near-wall streaks,@10#. A multi-
disciplinary research collaboration between UCLA and Caltech
was initiated to design and fabricate a large-scale distributed con-

trol system with integrated micro-machined transducers and mi-
croelectronic circuits for surface shear stress control in turbulent
boundary layers,@11,12#.

However, the distribution of stripe structure with MEMS is an
integral value composed of various frequency ingredients and can
result in ambiguities in the stripe structure. Therefore, new tech-
niques such as statistical and frequency analysis of the image data
are necessary to perform detailed analysis. The stripe structure
obtained with the micro-imaging chip is clearly visualized and
analyzed using statistical methods,@13#. In terms of frequency
analysis, the Fourier transform is a popular method but it removes
the time-space information of the stripe structure.

Recent studies have investigated the use of the wavelet trans-
form for time-space frequency analysis in mechanical engineering
applications. The main advantage of wavelet analysis is its ability
to analyze the frequency and not erase the time-space information.
Wavelet transforms are classified as either continuous or discrete,
@14#. Continuous wavelet transforms have been used for studies of
time-frequency analysis in turbulent shear flow including self-
similarity of a jet inner structure using one-dimensional continu-
ous wavelets,@15#, and scale transition in a mixing layer using
two-dimensional continuous wavelets,@16#. In addition, most
studies of time-frequency analysis use continuous wavelet trans-
forms. Conversely, eddy motion in the atmospheric surface layer
has been analyzed using the wavelet thresholding method,@17#.
The analysis enables for an image to be decomposing and regen-
erated numerically according to the orthonormal transform. Saito
@18# applied this principle to the analysis of electromagnetic
waves.

Contributed by the Fluids Engineering Division for publication in the JOURNAL
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May 30, 2000; revised manuscript received May 29, 2002. Associate Editor: J.
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The purpose of this paper is to describe the application of two-
dimensional discrete wavelet transforms to the visualization of
wall shear stress data obtained using a micro shear stress imaging
chip. The stripe structure of shear stresses in a turbulent boundary
layer is extracted for various frequency levels.

2 Experiments

2.1 Micro Shear Stress Imaging Chip. A micro shear
stress imaging chip, which is composed of multiple thermal type
sensors,@19#, is shown in Fig. 1. The chip has three rows of micro
sensors, each of which contain an array of 25 sensors. Figure 2
shows plan and cross-sectional views of the micro shear stress
sensor. Each micro sensor consists of a 1503330.45mm poly-
silicon resistor, and a 200320031.2mm silicon nitride dia-
phragm that seals a 2mm deep vacuum cavity. The purpose of the
cavity is to reduce heat transfer from the resistor to the substrate
and to increase the sensitivity of the sensor,@20#. The sensors are
connected to external constant temperature mode circuits, which
are used in the hot-wire anemometer, to drive at an overheat ratio
of 1.1 through gold bonding wires. Output from the anemometer
circuits is digitized by a 64-channel Keithly Metrabyte ADC
board in a Pentium-based PC. The sensitivity of the shear stress
sensor is approximately 1.0 V/Pa at a gain of 10.

2.2 Shear Stress Sensor Calibration and Temperature
Compensation. The heating power of a shear stress sensor op-
erating in steady state conditions can be correlated with wall shear
stresst as follows,@8#:

i 2R25~Tf2T!~A1Bt1/3! (1)

whereTf andT are the temperature of the heated sensor and the
measured fluid, respectively,R is the resistance of the sensor,i is
the heating current passing through the sensor, andA and B are
calibration constants. Two theoretical methods are used to corre-
late the output voltage with the wall shear stresst. In the first
method, t in fully developed turbulent flow is related to the
streamwise pressure gradient by

dPx /dx52t/h (2)

wherePx is the local pressure,x is the streamwise coordinate, and
h is the half-height of the wind channel. The pressure drop and
output voltage of the sensor was measured at center velocities
ranging from 8 to 20 m/s. IfT is constant, the wall shear stress can
be directly related to the output voltageEo by a sixth-order poly-
nomial as

t5a01a1E01 . . . 1a6E0
6 (3)

wherea0a1 , a2 , . . .a6 are calibration constants. These constants
were calibrated in the channel flow in a downstream region in
which turbulent flow was fully developed.

In the second method, an empirical relationship between Re and
the wall shear stress in fully developed channel flow is obtained,
@21#, by using

ut /u`50.1079 Re20.089 (4)

and

t5ut
2r, (5)

whereut is the friction velocity,u` is the center velocity of the
channel, Re (5hu` /n, whereh is the half-width of the channel
and u` is centerline velocity!. The streamwise pressure gradient
was measured andt calculated using Eq.~2! and the second
method given by Eqs.~4! and~5!. Good agreement was observed
between the two methods.

WhenT varies during the measurement process, a thermal cor-
rection should be applied. To determine the correction coefficient,
previous micro shear stress sensor versus fine thermocouple si-
multaneous measurements have done in channel flow of 10 m/s at
room temperatures ranging from 19.0 to 22.0°C. The slope of the
sensor output/temperature curve was2310 mV/°C. Temperature
compensation was achieved by collecting both ambient tempera-
ture and shear stress data and then performing an a posteriori
correction using software.

2.3 Experimental Setup. This experiment was carried out
in a turbulent channel flow facility. The channel, constructed of 13
mm Plexiglas, was 610 mm325.4 mm in cross section and 4880
mm long. A DC axial blower was used to generate the airflow.Fig. 1 Surface shear stress imaging chip

Fig. 2 Schematic plan „a… and cross-sectional „b… views of the
micro shear stress sensor

Journal of Fluids Engineering DECEMBER 2002, Vol. 124 Õ 1019

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Previous hot-wire measurements suggested that a centerline chan-
nel flow of 10 m/s consists of laminar entrance flow and fully
developed turbulent flow at the downstream half channel. The
micro shear stress imaging chip was flush mounted on the channel
wall 4267 mm from the inlet. One array consisting of 25 micro
shear-stress sensors covering a distance of 7.5 mm was used to
measure the instantaneous spanwise distribution of turbulent sur-
face shear stress, Re ranged from 6960 to 17,400.

2.4 Shear-Stress Distribution. Statistical values, which are
root mean square, skewness factor, and flatness factor of wall
shear stress measured using the imaging chip, are confirmed,@22#,
to be similar to the data obtained in previous experiments,@7,23#,
and by numerical computation,@6#. Figure 3 shows the distribu-
tion of two-dimensional shear stresses. The horizontal axis spans
7.5 mm ~data number 25!, and the vertical axis spans 51.2 ms
~data number 512! for three different values of Re. Each shear
stress value was normalized by

t̄5
t2tm

t rms
(6)

using the mean shear stress
•m root mean square shear stress

•rms for
each Re number as shown in Figs. 3~a!, ~b!, and ~c!. The high
shear stress regions are marked in red while blue represents shear
stress with 11 contour colors. Figure 3~d! shows the original data

in the vertical direction at the point at which the maximum value
was observed before normalization. The streaks were narrower,
closer together, and appeared at shorter time intervals as Re in-
creases. The shear stress fluctuation near to the wall increased
rapidly, resulting in a significant peak in the turbulent boundary
layer, because the velocity gradient increased rapidly due to the
influence of eddies guided by bursting events. From Figs. 3~a! to
~c!, the red regions of Re517,400 are insignificant and the blue
region is larger than those for lower Re number conditions.

3 Discussion

3.1 Spanwise Spacing of Low Speed Streaks.The charac-
teristics of sublayer streaks are well documented. The streaks,
which consist of low-speed fluid in the sublayer, appear randomly
and are typically 1000n/ut long in the streamwise direction,@24#,
with a mean spanwise spacing of 100n/ut , @5,25#. Here, n
andut denote the kinematic viscosity and the wall shear velocity,
respectively.

Next, the spanwise spacing of streaks was inspected by wave
number spectrum with sensor data of 25 spanwise profiles as
shown in Fig. 4. Low shear stress areas corresponding to low-
speed streaks and high shear stress areas corresponding to kink
parts of low-speed streaks were observed. Figure 5 shows an ex-
ample of a spanwise wave number spectrum for the determination
of the spanwise interval of streak structure. The figure shows the
wave number spectrum for Re56960. Local maxima at 200 and
300 @1/m# are not conspicuous peaks, but indicate a spanwise
spacing interval of low speed streak. This result suggests that a
spanwise spacing of low speed streaks is 99– 150n/ut . Similar
results were observed for a range of Re numbers. It is concluded
that this value verifies the result of 100n/ut obtained from visu-
alization experiments.

3.2 Streamwise Wave Number Decomposition

3.2.1 Analysis Method and Results Using Two-Dimensional
Discrete Wavelet Multiresolution Analysis.The original data was
derived from 25 data points over 512 epochs. The 25 points were
extrapolated to 32 points~4 on the right side and 3 on the left side!
with Fourier series coefficients in order to afford the power of two
for the discrete wavelet transform. The values of the original
points, which are points 5 to 29 in the extrapolated coordinate
system, were extracted after the calculation. The extrapolated
length measured 9.6 mm (300mm332). In the case of the 16
input data and fourth-order Daubechies functions, multiresolution
analysis outputs Level 0 to Level 3. The two-dimensional wavelet
spectrumS was obtained from

S5WnXWm
T (7)

Fig. 3 Shear stress measured with the imaging chip; „a… Re
Ä6960, „b… ReÄ12,180, „c… ReÄ17,400, „d… original data

Fig. 4 Shear stress distribution in spanwise direction „Re
Ä6960…
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whereWm
T is a transpose ofWn . From Eq.~7!, the discrete inverse

wavelet transform is expressed by

X5Wn
TSWm . (8)

In this study, a 16th-order Daubechies function was used as the
analyzing wavelet. A multiresolution analysis was performed us-
ing the inverse wavelet transform in Eq.~8!, after the wavelet
transform in Eq.~7! was operated to 253512 shear stress distri-
bution data in Fig. 3. In the case of the sixteenth-order Daubechies
function and 512 (529) time data ~total measurement time
551.2 ms), the multiresolution analysis with respect to time clas-
sifies to seven levels as shown in

X5Wn
TSWm5Wn

TS0Wm1Wn
TS1Wm1Wn

TS2Wm1Wn
TS3Wm

1Wn
TS4Wm1WnS5Wm1Wn

TS6Wm . (9)

In Eq. ~9!, Wn
TS0Wm is denoted Level 0, which indicates the

lowest frequency,Wn
TS6Wm is denoted Level 6, which indicates

the highest frequency. In data point 32, the wavelet level of the
multiresolution was decomposed from level 0 to level 3. The ab-
solute values by Fourier transform and wavelets are shown in Fig.
6 and Fig. 7. Each level operates a form of band pass filter.

Figures 8, 9, and 10 show the multiresolution with nine con-
tours for low Re number, middle Re number, and high Re number
conditions, respectively. Low shear stresses are denoted blue and
high shear stresses are denoted red. Minus values are produced
because the values were normalized. Level 6 is not shown because
noise was dominant. The patterns adding all levels from Level 0

to Level 6 enable the complete recovery of the original shear
stress distributions in Fig. 3, because Daubechies analyzing wave-
lets are orthonormal functions. The relation between the represen-
tative frequency, which was calculated with the maximum P.S.D.
in Figs. 6 and 7, and each wavelet level is shown in Table 1 and
Fig. 11.

From these figures, the original input data were decomposed
from the low-frequency component Level 0 to the high-frequency
component Level 5. I have done the above section of spanwise
spacing of low-speed streaks, if spanwise spacing is around 100
times of the wall unit, the spanwise wave number corresponding
to Re56960 and 17,400 becomes 0.24 mm21 and 0.61 mm21,
respectively. Level 0 shows a low-speed domain in Re56960 and
level 1 corresponds to Re517,400. The stripe structures due to a
series of bursting events in the low-speed shear stress area are
visualized clearly for each frequency level without erasing the
time and space information. In particular, red and green regions
appear more clearly on Levels 0 and 1 for low Re numbers. The
shear stress distribution appears until Level 3 and wave patterns
are observed on Levels 4 and 5.

3.2.2 Discussion According to the Kolmogorov Turbulence
Theory. The relation between wavelet level and wave number is
discussed by application of the Kolmogorov turbulence theory to

Fig. 5 Wave number spectrum of shear stress distribution in
spanwise direction „ReÄ6960…

Fig. 6 Space frequency of 16th Daubechies

Fig. 7 Time frequency of 16th Daubechies

Table 1 Relation between wavelets level and representative
frequency
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Fig. 8 Wavelets multiresolution in Re Ä6960

Fig. 9 Wavelets multiresolution in Re Ä12,180

Fig. 10 Wavelets multiresolution in Re Ä17,400
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the time axis of discrete wavelet multiresolved resolution. The
Kolmogorov wave numberkk that indicates the highest viscous
dispersion rate is expressed by

kk5S «

n3D 1/4

(10)

wheren is the kinematic viscosity,« is the energy transportation
rate, that is

«5A
v0

3

l 0

v050.2v̄ (11)

wherev0 is a representative velocity fluctuation that is assumed to
be 0.2 times the mean velocityv̄, and l 0 is a length scale in the
energy contain region that is assumed to be the radius of the
pipeline. In this study, the constantA is assumed to be 1.0. The
representative wave number on wavelet levelm is obtained by

km5
2p f R

v0
(12)

where f R is a representative frequency, which is the maximum
power spectrum density in Fig. 7. The relation between the wave-
let level and the representative wave number is shown in Table 2.
From this table, Level 0 indicates a wave number under the en-
ergy contain region, and Level 6 indicates the vicinity ofkk . The
wavelet level covers from the energy contain region to the viscous
dispersion region.

In the following section, all shear stresses on each wavelet level
are defined by

tall5(
j 51

512

(
i 51

25

A~t i j !
2 (13)

to consider the relation between the stress and Re.i is a position
on the time axis,j is a position on the space axis. The results are
shown in Fig. 12. The horizontal axis is the representative wave-
number in Table 1 normalized usingkk .

In this figure, the shear stress maintains an approximately con-
stant value until wave number 0.02, which is equivalent to Level
2 irrespective of Re. This is because the wave number is near to
the energy contain region from Table 2. However, at wave num-
bers greater than 0.02, the total shear stress decreases as the wave
number increases. Moreover, the shear stress dramatically de-
creases for low values of Re. This is because the eddy dispersion
is significantly influenced by the viscosity in low Re regions. The
proposed visualization technique is therefore verified.

4 Conclusions
A micro shear-stress imaging chip was used to measure the

instantaneous shear-stress distribution in a turbulent wall bound-
ary layer in flow with Reynolds number ranging from 6960 to
17,400. The two-dimensional shear stress distributions were visu-
alized with a two-dimensional discrete wavelet transform. The
following conclusions are proposed:

1. The two-dimensional structure of wall shear stress can be
decomposed and clearly visualized on each frequency level
without erasing time-space information using two-
dimensional wavelet multiresolution analysis.

Table 2 Relation between wavelet level and representative
wave number

Fig. 11 Relation between wavelets level and representative
frequency

Fig. 12 Relation between whole normalized shear stress and
wavenumber on the time space
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2. It is possible to visualize the low speed streak structure on
the wall as contours of two-dimensional wavelet level cor-
responding to spanwise wave number as a function of Re
number.

3. The total shear stresses under Level 2 relevant to near en-
ergy contain region maintains the same value irrespective of
Re number. However, the total shear stress over Level 3 in
near viscous dispersion regions under low Re number con-
ditions is lower than that under high Re number conditions.
This is a reasonable observation because the structure is sig-
nificantly influenced by viscosity under low Re number con-
ditions.
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Structure Inclination Angle in a
Turbulent Adverse Pressure
Gradient Boundary Layer
The effect of a strong adverse pressure gradient on the turbulent structure in an equilib-
rium boundary layer was studied using two-point space-time correlations. Theruu
correlations from the adverse pressure gradient layer were found to be inclined at a
considerably higher angle with respect to the wall in the inner region than in the corre-
sponding zero pressure gradient reference case. A wavelet analysis of the correlation data
showed that differences in the inclination angle exist at all length scales larger than
the boundary layer thickness. The inclination angle for the conventionally averaged cor-
relation contours was found to be in close agreement with the inclinations derived from
the wavelet filtered contours corresponding to the most energetic wave numbers.
@DOI: 10.1115/1.1511161#

1 Introduction
In strong adverse pressure gradient~APG! boundary layers the

main turbulent production term,2uv]U/]y, has two maxima,
one close to the surface and a second which moves towards the
middle of the layer with increasing pressure gradient. This outer
peak significantly affects the turbulence field, as may be observed
from the various budgets for the turbulent quantities~e.g., Brad-
shaw @1#, Spalart and Watmuff@2#, Skåre and Krogstad@3#!. As
the outer production increases due to the pressure gradient, a sig-
nificant turbulent diffusion away from this region develops. For
strong adverse pressure gradient boundary layers, considerable
diffusion towards the wall may therefore be present. Based on a
quadrant analysis, Krogstad and Ska˚re @4#, showed that the ad-
verse pressure gradient significantly affects the time scales of the
turbulent events, and also alters the contributions to2uv from the
various quadrants. In contrast to the zero pressure gradient~ZPG!
boundary layer, strong contributions from the first and fourth
quadrant develop in the region between the outer production peak
and the wall. Events in these quadrants are characterized by in-
rushing turbulent fluid which is reflected back from the wall.
Hence, when an adverse pressure gradient is present, it appears
that the turbulent flow in the outer layer may interact more effi-
ciently with the inner flow than is normally the case for the zero
pressure gradient layer.

The main aim of the present study is to investigate in more
detail the effect this change in transport characteristics has on the
large-scale turbulent motion.

2 Experimental Details
The APG boundary layer was generated in a closed return wind

tunnel, fitted with a 6-m-long test section equipped with a flexible
roof. This was carefully adjusted to produce equilibrium velocity
profiles in the boundary layer. Equilibrium was achieved for a
freestream velocity distribution given byUe;x20.22. For 4.0,x
,5.0 m the mean velocity profiles, as well as the turbulent
stresses were self similar, giving a strong velocity defect~Fig. 1!
and a shear stress profile with a significant maximum in the outer
layer ~Fig. 2!. As required for equilibrium layers, the length scales
in the equilibrium region, such as boundary layer, displacement

and momentum thicknesses, were found to increase linearly, and
the skin friction coefficient and shape factor remained constant at
Cf'631024 andH52.0, respectively. While the Reynolds num-
ber, Reu , was increasing from 39,000 to 51,000 in the equilibrium
region, the nondimensional pressure gradientb5(d* /tw)
3(dPe /dx) was kept approximately constant at 20 in this region.
Full details about the experiment are given in Ska˚re and Krogstad
@3#. According to Krogstad and Ska˚re @4#, the measurement uncer-
tainty was estimated to be less than 2% inu and 5% inv.

In addition to previously reported single probe measurements, a
number of measurements were obtained using arrays of eight eq-
uispaced X-wire probes~Fig. 3!. These measurements were per-
formed in the equilibrium region at Reu542,000. Three sets of
arrays, each having a probe separation twice of the previous, were
used to cover a large range of turbulent scales.

Similar data taken with an eight probe array with fixed probe
spacing were kindly made available to us by Prof. R. A. Antonia
at the University of Newcastle, Australia~see Antonia et al.@5# for

Contributed by the Fluids Engineering Division for publication in the JOURNAL
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
May 30, 2000; revised manuscript received January 31, 2002. Associate Editor: P. W.
Bearman.

Fig. 1 Velocity defect data for the zero „s… and adverse „d…

pressure gradient boundary layers
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documentation!. These data were taken in a zero pressure gradient
layer (Reu56030) generated in an open return wind tunnel, with a
5.4-m-long test section of 0.1530.89 m2 cross section. The same
probe geometry and type of filters and amplifiers were used in
both experiments, ensuring similar frequency response for the two
cases. This allowed a direct comparison between the large-scale
turbulent motions in the two flows to be made. The Reynolds
numbers for both flows are well beyond the range where Reynolds
number effects have been shown to be important (Reu<3000).
Although the Re in the APG case is almost an order of magnitude
higher than for the ZPG flow, the range of length scales found in
the two flows is assumed to be very similar. This follows from the
ratio between the boundary layer thickness,d, and the viscous
length scale,n/ut , which wasd15dut /n54410 and 4070 for
the APG and ZPG boundary layers, respectively.~d is taken to be
the distance from the wall to the location whereU is 99.5% of the
freestream velocity,Ue .) Therefore Reynolds number effects are
not expected to severely affect the comparison between the two
flows.

Velocity defect and shear stress distributions for ZPG boundary
layers are also shown in Figs. 1 and 2.~Note differences in scale.!
The large peak in2uv for the APG layer produces significant
differences in the budget for the turbulent kinetic energy,k
5uiui /2, compared with a ZPG layer~budget may be found in
Krogstad and Ska˚re @4#!. A strong gain in turbulent energy near
the wall due to the turbulent diffusion towards the wall, as well as
high rates of turbulent production and dissipation near the middle
of the layer, characterizes the APG budget compared to that of the
ZPG layer.

3 Two-Point Correlations
The two-point space-time correlations between two turbulent

quantitiesp andq, defined as

rpq~x0 ,Dx,t!5
p~x0 ,t !q~x01Dx,t1t!

~p2q2!1/2
(1)

were obtained using the arrays of eight X-wire probes.x is the
position vector with componentsx, y, andz. The reference point is
located atx0 and correlations are computed with respect to a sec-
ond point, separated by a distanceDx from the reference.

While the array used in the ZPG layer spannedDy/d'0.54, the
arrays used in the APG layer coveredDy/d'0.13, 0.26, and 0.53.
In order to convert measurements in the~y, t! domain into a
pseudo~x, y! space plane, time was converted to distance using
the Taylor hypothesis, i.e.,DX* 52UcDt/d. In the plots pre-
sented, the convection velocity,Uc , was taken to be the same for
all probes. The value chosen corresponded to the mean velocity of
the reference probe. Using the same convection velocity for all
probes may lead to some distortion of the correlation contours for
the largest scales, as discussed by Krogstad and Ska˚re @4#. In the
outer layerU varies only slowly withy in a ZPG boundary layer,
so the assumption appears to be reasonable. Krogstad et al.@6#
found that the convection velocity for scales larger than about
DX* 5Dx/d'0.2 is the same as the local mean velocity fory1

>40. For the APG layer the velocity increases virtually linearly
with distance from the wall over the entire width of all the rakes
used. For the correlations presented we will rely on the conclusion
drawn by Spina and Smits@7#, who observed that the structures
contributing most to the correlations retain their shape and coher-
ence for a considerable streamwise distance, producing virtually
identical correlations for distances of more than one boundary
layer thickness. This justifies the use of a single common convec-
tion velocity for two-point correlations.

Figure 4 shows iso-correlation contours ofruu obtained in the
two layers at different reference positions,Y0* 5y0 /d. In the outer
part of the layers, the inclination of the contours is close to 45 deg
for both flows. This angle of inclination has previously been ob-
served in boundary layers at zero pressure gradient conditions,
e.g., in the flow visualizations by Head and Bandyopadhyay@8#.
They used the concept of hairpin vortices to explain why the
organized structures tend towards an inclination close to 45 deg.
The vortex stretching due to the mean shear will cause a tilting of
the structure towards the wall. This is resisted by the increase in
induced velocity that each limb of the hairpin imposes on the
other, which tends to tilt the structure back towards the wall per-
pendicular. Other investigators have assumed that the structures

Fig. 2 Shear stresses. Symbols as in Fig. 1.

Fig. 3 Eight probe array
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are aligned close to 45 deg because this is the direction of princi-
pal strain. This explanation is linked to an assumption of pure
shear deformation, which may apply to incompressible laminar
flows where the shear stressestxy andtyx are identical and there-
fore their magnitude do not affect the direction of the principal
stresses.

For two-dimensional turbulent boundary layers the stress tensor
becomes

t i j /r52uiuj52S u2 uv 0

uv v2 0

0 0 w2
D (2)

and the normal stresses become important contributors to the di-
rection of the principal stresses. In the~x, y!-plane the two prin-
cipal stresses are found to be

2s1,25
u21v26~~u22v2!214~uv !2!1/2

2
. (3)

That the pressure gradient has so little effect on the structure
inclination in the outer layer is remarkable if this is a conventional
stress-strain alignment mechanism, considering the large differ-
ences in magnitude and distribution of the turbulent stresses in
this region. The distributions of the primary principal stresses for
the two flows are shown in Fig. 5. In the outer layer the APG

Fig. 4 Two-point velocity correlations, ruu , in the „x ,y …-plane. Contour levels: 0.1, 0.2, 0.3, 0.5, and
0.8. „a… Adverse pressure gradient, „b… Zero pressure gradient. Dashed lines: 45 deg inclination;
Solid line: inclinations of the most energetic structures.

Fig. 5 Distributions of the largest principal stresses. Symbols as in Fig. 1.
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stresses are more than an order of magnitude higher than for the
ZPG case, and the stress gradients are quite different. Although
the principal stresses are quite different in magnitude, the ratio
between the two principal stresses are virtually identical fory/d
.0.4 ~Fig. 6!. This indicates that if the deformation of the ener-
getic structures is due to a simple stress-strain mechanism, the
inclination angles for the two flows must indeed be very similar in
this region~as demonstrated in Fig. 4!. The differences between
the stress ratios increase closer to the wall, where the largest struc-
tural differences between the two flows were found. In the bulk
part of the layer the ratio is approximately constant at about
s1 /s253 – 4, which agrees with the data given by Champagne
et al. @9#.

The direction of the first principal stress is found at an angle of

f15
1

2
tan21S 22uv

v22u2D (4)

with respect to the surface. Sinceuv,0 andu2.v2 for a con-
ventional boundary layer, the direction of the principal stresses

must lie in the rangep/4<f1<p/2. The direction of the second
principal stress isf25f11p/2.1 If all the turbulent stresses were
linked to the strain tensor through an isotropic viscosity~as in the
laminar case!, f1 will represent the expected direction of defor-
mation.

The distributions off1 for the two flows, shown in Fig. 7, are
virtually indistinguishable throughout the boundary layer. Thus
both the directions of the principal stresses and the two-point ve-
locity correlations tend to support the observations implied in the
conclusions drawn by Head and Bandyopadhyay, that the orga-
nized structures are aligned according to a local mechanism which
is independent of the magnitude of the stresses. Therefore a vortex
model which is independent of the streamwise pressure gradient,
as used by Perry and Marusic@11# to compute the turbulence
characteristics of ZPG and APG boundary layers, appears to be
justified. The considerable differences in the turbulent stresses for

1The direction of the first principal stress for the tensor2t i j /r5uiuj , as used by,
e.g., Rogers and Moin@10#, will be f12p/2.

Fig. 6 Ratio between the first and second principal stresses. Symbols as in
Fig. 1.

Fig. 7 Directions for the largest principal stresses. Symbols as in Fig. 1.
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the two flows, reflect the differences in vortex stretching, rather
than differences in the type of organized motion.

The main structural effects due to an APG are found close to
the wall, where the angle of the two-point correlation is consider-
ably steeper than for the ZPG layer. This effect is attributed to the
strong vertical diffusion in the present APG flow, which tends to
reduce the difference in flow structure between the inner and outer
layer. Distinct differences in the length scales may also be ob-
served. The APG strongly reduces the scales both in the stream-
wise and vertical direction. This is due to the strong negative
mean velocity gradient,]U/]x.

4 Wavelet Analysis
To further explore the differences in inclination for theruu

correlations, the array data sets were analyzed using one-
dimensional wavelet transformations int ~see, e.g., Daubechies
@12#!. Theu andv-signals from each probe were transformed into
wavelet coefficients using the Mexican hat wavelet. 80 scales
were used to analyze five batches of 213 data from each probe.
The wavelet power spectrum was in close agreement with the
Fourier spectrum~Fig. 8, here shown for ZPG atY* 50.10). The
range of wavelet length scales applied corresponded to 0.18
,DX* ,167 for the ZPG flow, while in the APG case the scales
were 0.03,DX* ,28.1. Since the largest differences between the
two flows are found close to the surface, only the data correspond-
ing to the lower graphs of Fig. 4 are presented here (Y0* 50.10 for
the ZPG and 0.08 for the APG boundary layers, respectively!.

A number of discrete scales were selected and these wavelet
coefficients were transformed back to the velocity-time domain.
Hence each of the original velocity signals were transformed into
a set of signals, each corresponding to the motion of one particular
scale. In this way a number of array data files could be con-
structed, for which only one dominant scale of turbulent motions
would be present. Figure 9 shows a set ofruu correlations as
function of wavelet scales for the two flows using the data shown
in Fig. 4. The correlations for the smallest scales are seen to be
aligned perpendicular to the surface.~Note the differences in hori-
zontal and vertical scales.! As the scale increases the correlations
grow both in the vertical and streamwise directions. At the same
time a distinct tilting towards the horizontal is evident. It is also
apparent that for the two flows the difference in inclination angle
increases with scale. For the smallest scales the correlations are
organized roughly at the same angle, but for the largest scales the
APG correlations are aligned more vertical than for the ZPG layer.

It is also apparent that the APG correlations are higher and shorter
than those of the ZPG boundary layer. This is in agreement with
the reduced vortex stretching expected by the strong negative
]U/]x term in the APG flow.

It was verified that the results are not very sensitive to the type
of wavelet used. Correlations were also computed using the Haar
wavelet which is significantly different to the Mexican hat~Fig.
10!. The positive correlations obtained for the two wavelets for
scaleDX* '4.8 are shown in Fig. 11. The shapes are seen to be
identical but a small difference in extent is evident, with the Haar
wavelet correlations being slightly wider. This is partly due to the
differences in characteristics of the two wavelets, but also due to
the fact that with a finite number of 80 wavelet scales it was not
possible to match the scales identically for the two cases.

All correlations alternate in the streamwise direction between
regions of strong positive and negative values, showing that
events triggered at one location induce strong opposing motions in
the nearby region.~For the smallest scales, regions of negative
correlations were also found above and below the reference
point.! Since the location of these secondary correlation regions
depends directly on the scales considered, they eventually cancel
when the contributions from all scales are added up.

The inclination angles for the correlation contourruu50.3 was
extracted as function of the wavelet scales~Fig. 12!. These angles
were obtained from the line connecting the upper and lower ex-
tremal points on the curve. Bisset et al.@13# observed that for
conventional two-point correlations, the contours of high correla-
tions appear to be steeper than those of the lower values~see, e.g.,
Fig. 4!. They suggested that since the small-scale turbulent motion
must contribute mainly to the region of high correlations, the
small-scale structures appear to be organized steeper with respect
to the surface than the large-scale motion. This deduction is sup-
ported by Fig. 12 where the angle is seen to drop steadily from
close to 90 deg at the smallest scales, to less than 20 deg in the
ZPG case for the largest scales investigated here. This agrees well
with the inclinations of the large scale motion which may be de-
rived from the ZPG boundary layer measurements of Brown and
Thomas@14# ~about 17 deg atY0* 50.2).

The dependence of the inclination with structure scale is seen to
be similar for the two flows up to a scale of the order of the
boundary layer thickness. At larger scales the angles tend towards
an almost constant level. This large-scale inclination is signifi-
cantly different for the two cases. With the pressure gradient
present, the angle is of the order of 40 deg, more than twice the

Fig. 8 Spectra for the zero pressure gradient layer at y ÕdÄ0.10. Wavelet spec-
trum: — d—; Fourier spectrum: — s—.
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Fig. 9 Two-point velocity correlations, ruu , in the „x ,y …-plane as function of wavelet scale. Contour levels: À0.7 to 0.9 with 0.2
increments. Left: APG, Right: ZPG.
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value for the ZPG case. Since the large scale motion is the main
contributor to the conventional correlations, this confirms the dif-
ferences observed in Fig. 4. From the Fourier or wavelet spectra
the most energetic scales may be extracted. These were found to
be DX* '3.4 and 1.2 for the ZPG and APG layers, respectively.
The inclinations found at these scales have been included in Fig. 4
and are seen to line up closely with the directions of the conven-
tional two-point correlations.

Since the velocity distributions for the two cases are different, it
may be argued that some of the differences observed in the incli-
nation angles may be due to the use of a convection velocity
which depends on the mean velocity at a fixedY* position. For
the smallest scales the correlations do not extend very far away
from the reference point, so the assumption appears to be justified.
For the largest scales the correlation contour used to derive the
inclination angle extends over a significant part of the layer and
the velocity variation over the contour may be significant. We
have therefore also included in Fig. 12 a set of angle estimates
where the convection velocity used is the average mean velocity
over the vertical extent of theruu50.3 contour. This implies that

Uc increases with scale. For the ZPG case the increase is small
since the profile is rather full, but for the APG layerUc increased
by about 40% from scaleDX* '1 to DX* 54.8. As expected this
causes a distinct reduction in the inclination angle for the largest
scale, from about 40 to about 30 deg. The effect on the ZPG
estimates is very small. However, despite the possible uncertain-
ties in the choice of convection velocity, there appears to be no
doubt that the large scale angles are different for the two flows.

Krogstad and Ska˙re @4# found that the conventional correlations
for the wall normal velocity component,v, were very little af-
fected by the pressure gradient. A set of scale-dependent correla-
tions are shown in Fig. 13. Apart from the correlations forrvv
560.1, which are more stretched iny in the APG case than for
the ZPG layer, the correlations have roughly the same extent both
in x and y in both cases. The strongest contributions to the con-
ventionalrvv correlations are found at much higher wave num-
bers than forruu . Therefore the most important contributions are
found for wavelet scales of the orderDX* 51 and smaller, where
only a small amount of stretching iny for the APG case is appar-
ent. This corroborates the findings of Krogstad and Skåre@4#.

Fig. 10 Mexican hat „solid line … and Haar „dotted line … wavelets.

Fig. 11 Comparison between correlations obtained using the Mexican hat „solid
line … and Haar „dotted line … wavelets. DX*É4.8.
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Fig. 13 Two-point velocity correlations, rvv , in the „x ,y …-plane as function of wavelet scale. Contour levels:
À0.7 to 0.9 with 0.2 increments. Left: APG, Right: ZPG.

Fig. 12 Correlation inclination angle as function of wavelet scale, DX* . Refer-
ence probe at Y0*É0.1. Adverse pressure gradient: filled symbols, Zero pressure
gradient: open symbols. s: Uc taken as the mean velocity of the reference
probe. h: Uc taken as the average mean velocity over the ruuÄ0.3 contour.
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5 Conclusions
It has been documented by the use of two-point space-time

correlations, that strong adverse pressure gradients effectively re-
duce the degree of anisotropy in a turbulent boundary layer. This
effect is caused by the action of a negative]U/]x which reduces
the stretching of the coherent structures. The effect is most pro-
nounced near the surface. A similar effect is caused by the strong
turbulent diffusion towards the wall from the peak in turbulence
production found in the outer layer. The inclination of the corre-
lations in the outer layer was found to be insensitive to the pres-
sure gradient, suggesting that the large-scale structures are aligned
by a mechanism which is little sensitive to the characteristics of
the mean flow. This was further supported by a study of the prin-
cipal stresses of the turbulent stress tensor. Although the tensors
for the ZPG and APG boundary layers are very different, the
directions of the principal stresses with respect to the wall are
virtually identical throughout the boundary layers.

Wavelet analysis was used to show that the inclination of the
turbulent structures with respect to the wall depends strongly on
the length scale associated with it. While small-scale motion is
aligned virtually vertically, the angle becomes gradually smaller
as the scale increases. When an adverse pressure gradient is ap-
plied, the dominant length scales in the streamwise direction are
reduced, which causes the correlations at a particular scale to be
tilted towards the wall normal. The inclination obtained from con-
ventional two-point space-time correlations depends primarily on
the scales of the most energetic structures.

Since the major contributions tov2 are found at much higher
wave numbers than foru2, this explains why thervv correlations
are found to be aligned almost vertically for all types of boundary
layers. This was found to be the case for all wavelet scales inves-
tigated.

Nomenclature

APG 5 adverse pressure gradient
Cf 5 skin friction coefficient
Re 5 Reynolds number
U 5 mean velocity in streamwise direction~m/s!

X, Y, Z 5 length scales inx, y, andz-directions~m!
ZPG 5 zero pressure gradient

k 5 turbulent kinetic energy~m2/s2!
t 5 time ~s!

u, v 5 fluctuating velocities in thex andy-directions~m/s!
ut 5 shear velocity~m/s!

x, y, z 5 coordinates in the streamwise, wall normal and
lateral directions~m!

d 5 boundary layer thickness~m!
u 5 momentum thickness~m!
r 5 two-point space-time correlation function
n 5 kinematic viscosity~m2/s!
t 5 shear stress~N/m2!

Subscripts

e 5 freestream variable
i, j 5 general indices

o 5 reference position
w 5 wall variable

Superscripts

1 5 variable normalized usingut andn
* 5 variable normalized withd
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Air Entrainment Effects on the
Pressure Transients of Pumping
Systems With Weir Discharge
Chamber
This paper presents a new model for the study of air entrainment on the extreme pressure
surges in pumping systems. For the present fluid system considered with a weir discharge
chamber, numerical investigations showed that, with the proposed model of the air en-
trainment, reasonable predictions of transient pressures with proper phasing and attenu-
ation of pressure peaks can be obtained. The results obtained are consistent with obser-
vations from field measurements made when the pumps were operating at low pump
cutout levels where air entrainment due to attached surface vortex and falling jets from
the inflow near the pump intake were present. Further studies were also made on the
design characteristics of the weir discharge chamber on the extreme pressure transients
for the unsteady flow in the pipeline system with various degrees of air
entrainment.@DOI: 10.1115/1.1514204#

Introduction
A common flow arrangement in a pumping system for cooling

water of thermal power plant or large air conditioning system in
large building complex consists of a source of cooling water and a
downstream discharge chamber discharging heated water into the
sea. In between the source of cooling water and the sea, there are
pumping stations installed with group of operating pumps and a
pipeline system. The topography of the pipeline system used in
the present study is shown in Fig. 1~a!. Preliminary study on the
pipeline system of Fig. 1~a! showed that the pressure along the
pipeline would drop to subatmospheric pressure at the peak loca-
tion B when the operating pumps are shut down or tripped. For
the present applications with a pipeline system that can withstand
high tensile~positive pressure! load but is very weak in receiving
compressive~subatmospheric pressure! load, the pipeline may
collapse~crash! if the duration of the extreme subatmospheric
pressure is long. In the typical day to day operations of a cooling
water pumping system, pipelines at high points will be frequently
subjected to subatmospheric pressures. The pipelines may thus
buckle if unprotected against long duration of negative pressure
surges. One way to avoid this problem is to install air valves at the
peak location at B. When the line pressure at the peak location
drops below atmospheric pressure, the air valve opens to admit
air. This prevents a further drop in the pressure in the pipeline.
During a subsequent rise of the line pressure above the atmo-
spheric pressure, the admitted air is allowed to escape under a
controlled manner. However, the rapid expulsion of the air from
an air valve may very often itself leads to the complete exhaustion
of the air within a short duration. This will in turn result in dan-
gerous pressure transients in the fluid system due to the severe
flow deceleration that occurs when the water strikes the air valve
while moving at the same rate as the exhausting air. In a series of
studies undertaken at Colorado State University on extreme nega-
tive pressure occurring at the peak of a fluid system,@1#, showed
that if the duration of the extreme negative pressure did not ex-
ceed 60 seconds with no air valves installed, the use of very small
air release valves with an appropriately sized weir discharge

chamber could effectively reduce the extreme pressure transients
in the fluid system. In the present study, the various design fea-
tures of the weir discharge chamber were studied using a numeri-
cal approach without the air valves but included the effects of air
content under transient condition. Numerical studies were con-
ducted on various designs of the discharge chambers to investigate
the duration of the negative pressure transients at point B with and
without the air entrainment effects.

Air Entrainment Model
Earlier investigations by Pearsall@2# showed that the presence

of undissolved gas bubbles in a fluid reduces the wave speed.
Through the present modeling, it can be shown that the effect of
free air on wave speed is more significant under low-pressure
conditions, when its volume is greater than under high-pressure
conditions. The new model proposed here assumes the presence of
an initial free entrained air of volumetric void fraction«o and
dissolved gas content of relative volumetric void fraction«g in the
liquid at atmospheric pressure and ambient temperature. Assump-
tions were also made that:~i! the gas-liquid mixture is homoge-
neous;~ii ! the free gas bubbles in the liquid follow a polytropic
compression law withn51.2– 1.3~due to the occurrence of some
heat transfer from the heated fluid in the pipeline to the surround-
ing soil!; and ~iii ! the pressure and temperature within the air
bubbles during the transient process is in equilibrium with the
local fluid pressure and temperature. When the computed local
transient pressure falls below the gas saturation pressurePg , it is
assumed that there is a release of dissolved gas ofagr«g. When
the computed transient pressure recovers to a value abovePg , it
is assumed that an equivalent amount ofaga«g gas is absorbed
into the fluid. For the present model, the value of« has a lower
limit determined by the vapor pressurePv of the fluid. Whenever
the transient pressure fall belowPv , it is assumed here that mini-
mum pressure remained atPv for the duration of this fluid tran-
sient. Hence, the values of the variable wave speed will have a
lower bound, which is consistent with the field data observed.

Consider a control volume of gas-liquid mixture containing a
fractional volume« of gas in free bubble form. It can be shown
that the effective bulk modulusKT of the gas-liquid mixture is
given by ~@3#!
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At any instant of timet5kDt and at any location along the pipe-
line x5 iDx, the local wave speedai at an absolute pressurePi
and air volumetric void fraction of« i is given by

ai
k5Frw~12« i

k!S 1

K
1

« i
k

nPi
k 1

cD

eED G21/2

. (2)

For this model of variable wave speed the initial free air volu-
metric void fraction«o and dissolved gas relative volumetric void
fraction «g at a reference absolute pressurePo and temperature
To must be specified. The initial variable wave speed along a
pipeline~at node pointsi 50, 1,.....,N) is then computed through
the absolute pressure distribution along the pipeline from Eq.~2!
starting fromk50 ~steady state!.

The computation of the above transient local air volumetric
void fraction in Eq.~3! along the pipeline is given by

«T
k115S Pi

k

Pi
k11D 1/n

« i
k and «o

k115S Po

Pi
k11D 1/n

«o ; (3)

~a! for Pi
k11>Pg~T! and «T

k11<«o
k111agr«g : « i

k115«T
k11

(3a)

~b! for Pi
k11>Pg(T) and«T

k11.«o
k111agr«g , with a time delay

of KaDt:

« i
k115S Pi

k

Pi
k11D 1/n

~« i
k2aga«g! (3b)

~c! for Pi
k11,Pg(T) and at a time delay ofKrDt:

« i
k115S pi

k

pg
D 1/n

~« i
k1agr«g!. (3c)

The present study assumes the absorption of free gases and the
release of dissolved gases with a time delay ofKaDt andKrDt,
respectively, and an instant cavitation atPv under transient con-
ditions. In the present model, typical values used forKa and Kr
are 1.000. TheseKa andKr values are currently still under fine-
tuning for the better prediction of the phasing in pressure tran-
sients analysis. However, when compared with the field data ob-
tained so far, there are evidences in our studies to show that both
Ka andKr are slightly larger than 1.000 and thatKa.Kr . More
field tests are currently performed to have a better estimation for

the values ofKa andKr ~Lee and Cheong@4#!. A typical free air
content in the industrial water intake at atmospheric pressure is
about 0.1% by volume and the free gas content evolved at gas
release head is about 2.0% at atmospheric pressure head. The
fractional parameter of gas absorption isaga'0.3 and the frac-
tional parameter of gas release isagr'0.6 ~Pearsall@2#, Kranen-
burg @5#, and Provoost@6#!. For the comparative study of constant
wave speed cases, the present study assumed«50.000~fully de-
aerated water! in the fluid system even when the transient pressure
falls below thePg or Pv , i.e., the system is assumed completely
free from the influence of entrapped air or water vapor.

The model expressions in Eq.~3! are very different from that
given by Pearsall@2#, Fox @3#, Chaudhry, Bhallamudi, Martin, and
Naghash@7#, and Wylie, Streeter and Suo@8# where they do not
take into considerations the evolution of dissolved gases and the
re-absorption of released gases below and abovePg , respectively,
in the transported fluid under transient flow conditions. The air
entrainment models of Pearsall and Provoost assumed that the air
volumetric void fraction~«! is constant throughout the pipeline
without local variation due to the transient pressure changes.
Proper phasing of the transient pressure variation was difficult to
obtain with the existing models especially when air entrainment in
the fluid system exists. The present new model as described
through the above Eq.~3! includes a computational procedure for
the changes of local air volumetric void fraction~«! due to local
transient pressure variation. The evolution of dissolved gases and
the re-absorption of released gases below and abovePg , respec-
tively, in the transported fluid are also included in the present
model ~Lee and Pejovic@9#!.

Method of Characteristics With Variable Wave Speed
The method of characteristics applied to the pressure transient

problem with variable wave speedai as modeled above can be
described~Fox @3#! by the respectiveC1 and C2 characteristic
equations

g

a

dH

dt
1

dV

dt
1

g

a
V sinf1

f l

2D
VuVu50, (4a)

dx/dt5V1a (4b)

and

2
g

a

dH

dt
1

dV

dt
1

g

a
V sinf1

f l

2D
VuVu50, (5a)

Fig. 1 „a… Pumping station pipeline profile, „b… Weir discharge chamber at location C
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1036 Õ Vol. 124, DECEMBER 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



dx/dt5V2a. (5b)

With air entrainment, the transient computation of« i along the
pipeline depends on the local pressure and the state of the local air
volume and is given by Eqs.~3!, ~4!, and ~5!. The loss factorf l
used in conjunction with the method of characteristics in Eqs.~4!
and~5! with air entrainment and gas release in a pipeline system is
evaluated at the local pointi using the characteristics of the flow
at that point. The steady-state overall loss factor at the operating
point of a system can be determined from the pump characteristic
curve and the system curve. Irregulart-grid and regularx-grid
were used in the present study. In the present work,i denotes the
regularx-mesh point value at locationx5( iDx) andk denotes the
irregular time level corresponding to the time attk5((Dtk). The
value of the time-stepDt at each time level for a stable and
accurate numerical solution is determined by the Courant-
Friedrichs-Lewy~CFL! criterion ~Roache@10#!

Dtk5min@kiDx/~ uVi u1ai !# for i 50,1,.....,N, (6)

whereki is a constant less than 1.0.
The characteristic equations specified by Eqs.~4!–~5! can thus

be approximated by the finite difference expressions

g

aR

Hi
k112HR

Dtk 1
Vi

k112VR

Dtk 1
g

aR
VR sinf i1

f l R

2D
VRuVRu50,

(7a)

xi2xR

Dtk 5VR1aR (7b)

and

2
g

aS

Hi
k112HS

Dtk 1
Vi

k112VS

Dtk 1
g

aS
VS sinf i1

f l S

2D
VSuVSu50,

(8a)

xi2xS

Dtk 5VS1aS , (8b)

whereR is the point of interception of theC1 characteristic line
on thex-axis between node points (i 21) and i at thekth time
level andS is the point of interception of theC2 characteristic
line on thex-axis between node pointsi andi 11. With conditions
known at pointsi 21, i and i 11 at thekth time level, the condi-
tions atR andS can be evaluated by a linear interpolation proce-
dure. The conditions atR and S are then substituted into Eqs.
~7!–~8! and the solutions at the (k11)th time level at pointi are
obtained fori 50,1,.....,N. Grid point independent studies were
made forN5501, 751, 1001, 1251, and 1501, for the length of the
pipeline considered. An optimum mesh size ofN51001 was fi-
nally used for all the solutions presented in this work.

Operation and System Boundary Conditions
In order to safeguard the pipeline and its hydraulic components

from over and/or under pressurization, it is important to determine
extreme pressure loads under various operating conditions. Pump
shutdown is an operational case that has to be investigated. This
often gives rise to maximum and minimum pressures. The most
severe case occurs when all the pumps in a station fail simulta-
neously owing to a power failure. In this case the flow in the
pipeline rapidly diminishes to zero and then reverses. The pump
also rapidly reduces its forward rotation and reverses shortly after
the reversal of the flow. As the pump speed increases in the re-
verse direction, it causes great resistance to the back flow, which
produces high pressure in the discharge line near the pump. To
prevent reverse flow through the pump, a check valve is usually
fitted immediately after each pump. When the flow reverses, the
check valve is activated. A large pressure transient may occurs in
the pipeline when the flow reverses and the check valves of the
pumps are closing.

The equivalent pump transient characteristics in the pumping
station during pump shutdown and pump run-down can be de-
scribed by the homologous relationship fornp pumps as

He
k115A1~Nk11!21~A2 /np!~Nk11!Q0

k111~A3 /np
2!~Qo

k11!2

(9a)

Fig. 2 Transient pressure at peak location B with HC at LWL
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Te
k115~B1np!~Nk11!21B2~Nk11!Q0

k111~B3 /np!~Qo
k11!2

(9b)

he
k115C11~C2 /np!~Qo

k11/Nk11!1~C3 /np
2!~Qo

k11/Nk11!2

(9c)

Te52I edv/dt (9d)

whereHo
k115He

k11 , I e5npI , v52p Nk and He
k , Qe

k,Te
k , he

k ,
Nk are the instantaneous equivalent pump pressure head, volumet-
ric flow rate, pump torque, pump efficiency and pump speed, re-
spectively,np is the number of pumps,A1 , A2 , A3 , B1 , B2 , B3 ,

and C1 , C2 , C3 are single-pump constants. The above pump
characteristics are transient characteristics as the pump speedsNk

are different at different time levels after pump shutdown. The
efficiency of the equivalent pump during pump run-down is as-
sumed to be equal to the efficiency of the corresponding single-
pump run-down efficiency. Equation~9a! is to be solved together
with the C2 characteristic line described by Eqs.~7! and ~8!. A
concept of equivalent pump was employed when there is more
than one pump operating in a pumping station. The changes in
pump speed during pump run-down for both normal and turbine
modes are modeled~Fox @3#!. The determination of the equivalent

Fig. 3 Transient pressure at peak location B with HV above HWL

Fig. 4 Transient pressure at peak location B with HC ÄHWL¿3Õ10 DWLÄ105.26 m
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pump characteristics and computation of the run-down pump
speedNk11 is determined from Eqs.~9b!–~9d! by using the pro-
cedures of Wylie, Streeter, and Suo@8# and Fox@3#, respectively.
When a significant decrease in the flow rate is encountered in the
pump, the check valve will be initiated to close. Downstream of
the pipeline system at location C~Fig. 1~a!! is the weir discharge
chamber~Fig. 1~b!!.

Fluid Transient Responses in Weir Discharge Chamber
The discharge chamber~Fig. 1~b!! is located at nodeN at the

end of the pipeline. The height of the water column inside the
discharge chamber at steady state operation is known. Thus, dur-
ing transient calculations at thek11 time level of tk115tk

1Dt, theC1 Characteristics equation gives

HN
t1k5HN21

k11 1BQN21
k11 2RQN21

k11 uQN21
k11 u2BQN

k112CQN21
k11

(10a)

with B5a/(gApipe), C5(Dt/Apipe)sinf, R5(a flDt)/
(2gDApipe

2 ) andQ5volumetric flow rate.

The estimation of the height of the water columnHTN
k11 inside

the discharge chamber is given by the continuity requirement,

HTN
k115HTN

k 1
Dt~~12«N

k11!QN
k111~12«N

k !QN
k !

2Atank
, (10b)

where Atank5WA3WB is the cross-sectional area of the dis-
charge chamber as shown in Fig. 1~b!. The piezometric pressure
head at the junction~at an elevation ofZHN) of the discharge
chamber with the pipeline is related through

HN
k115HTN

k111ZHN . (10c)

Equations~10a!–~10c! give the solutions for the transient charac-
teristics of the weir discharge chamber with the effects of air
entrainment. As this is an open discharge chamber, overflow oc-
curs if the volume of water inside the chamber exceeds its holding
capacity. Thus, assuming that HC is the design height of the dis-
charge weir chamber at location C~Fig. 1~b!!:

HTN
k115HC if HTN

k11>HC. (11)

Fig. 5 „a… Transient pressure at peak location B HC ÄLWLÄ101.10 m. „b… Transient pressure at peak location B HC ÄLWL
¿3Õ10 DWLÄ105.26 m.
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Results and Discussion
For the present studies, the pumping station uses three parallel

centrifugal pumps of the same characteristics to supply a total of
1.08 m3/s of cooling water from a holding reservoir at A through
a 0.985 m diameter main of 4720 m length. The discharge weir
chamber is installed at the end of the pipeline at C. The pressure
transient characteristics with the discharge chamber were investi-
gated for different design features of the chamber. The influence
of the design variables~Fig. 1~b!!, the chamber height~HC! and
its cross-sectional area (WAB5WA3WB), on the pipeline pres-
sure transient were investigated in this numerical study. A refer-
ence area WABref with WA, WB of 3 and 2 diameters of the pipe,
respectively, was used. Typically, the peak level of the system at B
~107.75 m! is higher than HC. However, HC is higher than LWL
~101.10 m!. The inertia ~I! of the full pumpset~3 pumps! is
33.30 kgm2. Each pump is also fitted with check valve at the
immediate downstream end of the pump. For the cases considered
with the heated water flowing through the fluid system, the water
temperature wasT'65°C with Pv'27.6 m of water gauge.Pg

was assumed approximately equal toPv . The « values investi-
gated in this work was in the range of 0.000 to 0.030.

With no air entrainment («50.000), numerical studies were
initially carried out for three different outlet tidal heights between
the low water level~LWL ! and high water level~HWL!. With the
weir height set at the low water level (HC5LWL). Figure 2
shows the transient pressure variations at the peak location B upon
tripping all the pumps. For all the three cases studied, the pressure
at the peak location B diminishes rapidly towardsPv ~flat portion
of the graph!. With the outlet water level at WL15LWL, the
pressure at the peak location B remains atPv for the duration
~200s! of the numerical investigation. At higher water levels of
WL2 and WL3, the results show an improvement of the pressure
transients~become more positive!. Thus, this study indicates that
it is desirable to have a higher weir discharge level.

From the results of the above study, the weir height was next
set at higher levels near the HWL. Investigations show that the
duration of the transient pressure atPv is significantly shorter with
a higher HC. Although the period of pressure variation and the

Fig. 5 „continued …
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lowest values of the transient pressure did not change signifi-
cantly, the transient pressures for a higher weir discharge level
show less negative peak-to-peak pressure variations. These results
also indicate that higher discharge levels above the HWL are de-
sirable. With weir heights well above the high water level, Fig. 3
shows that the transient characteristics at B further improves~i.e.,
less duration at gas release pressure!. Positive transient pressures
appear for HC.HWL12/10 DWL. The variation of the static
heads of the pumps operating point due to the changing tidal
conditions and HC were also taken into considerations in the
present study~Fig. 2!.

Subsequently, three different cross-sectional areas of the weir
discharge chamber were also investigated for HC above the HWL.
Figure 4 shows the influences of different chamber cross-sectional
areas at weir height HC5HWL13/10DWL. With a cross-
sectional areas at 2.5 and 5.0 times greater than the reference
cross-sectional area, the transient pressure at B has higher peak as
compared to the standard cross-sectional area~WABref!. However
unlike the influence of different weir heights, there are little
changes in the inception and duration time of the pressure surges
at Pv for different cross-sectional areas investigated. The results
obtained further confirm the previously obtained trends that at the
higher weir height (HC5HWL13/10DWL), there are more sig-
nificant portions of the transient pressures which are above the
atmospheric pressure when compared with the cases for the lower
weir height.

The effects of the air entrainment~«! on the transient pressures
at B are shown in Figs. 5~a!–5~b! for weir heights of~a! HC
5LWL and ~b! HC5HWL13/10DWL, respectively. The cross-
sectional area of the chamber is set at the standard reference
value. The results show that the time taken for the pressure in the
pipeline to drop toPv after the pump trip is usually more gradual
as the values of the air entrainment increases from 0.000 to 0.030.
A study of many corresponding numerical cases using the above
air entrainment model further shows four distinct characteristics
of the pressure transient:~a! the pressure transients are irregular

when compared with the air free cases and the period of pressure
surges increase with increasing air entrainment;~b! the duration of
the downsurge at gas release pressure decreases with increasing
air entrainment levels;~c! with a higher weir discharge level, the
duration of the pressure downsurge at gas release pressure de-
creases when compared with a lower weir discharge chamber; and
~d! the pressure transients with air entrainment are nonsymmetri-
cal with respect to the system static pressure head, while the pres-
sure transients for the constant wave speed model were approxi-
mately symmetrical with respect to the system static pressure head
~Jonsson@11#!.

Comparison With Field Measurents
Field measurements~Lee and Cheong@10#! were carried out for

one simulation case mentioned in this study in order to verify the
validity of the numerical simulations. The transient pressures were
measured at the location B~the peak location at the hill top! of the
discharge pipe system as shown in Fig. 1~a! using piezoresistive
absolute pressure transducers with the capability of monitoring
subatmospheric pressures. Details of the accuracy of the instru-
mentation and measurement are described in Lee and Cheong
@12#. Briefly, the pressure transducer when coupled to a piezore-
sistive amplifier produces a calibrated sensitivity of 50 mV/bar.
With the calibration current set by fine adjustment through the
piezoresistive amplifier and checked with a calibration plug, the
overall measurement error of the pressure pulsations amplitude is
of the order of 0.1%. The measurements were carried out by caus-
ing a simultaneous trip of the three pumps with the selected weir
discharge chamber design of HC5HWL12/10DWL and with
standard cross-sectional area. The corresponding transient pres-
sures at a location B obtained from the numerical surge analysis
are compared with the experimental values from pressure trans-
ducers in Fig. 6 for various air entrainment values. The air en-
trainment quantities were introduced into the pumping system
through an air compressor by throttling the air supply and the

Fig. 6 Comparisons with field measurements transient pressure at peak location B with HC ÄHWL
¿2Õ10 DWLÄ104.94 m
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volumetric air supply was measured through an air flow meter.
The measured data and the computed results with no air intro-
duced«50.000 and with air supply at«50.001, 0.005, and 0.010
value were compared and are presented in Fig. 6. The numerical
values compare very well with the corresponding field measure-
ments except for the higher values of air entrainment. The com-
puted pressure surges show basically same magnitude and phasing
as the field measurements.

The accuracy of the air entrainment values introduced into the
fluid system were also checked by looking at the resulting acous-
tic signatures of the flow through an electromagnetic flow meter.
Previously the flowmeter was calibrated by correlating the acous-
tic signatures of the flow through the meter with known amount of
air introduced into the system using an air compressor. For ease of
comparison, all the air flow volumes were converted to air volume
at standard conditions of one atmospheric pressure and 20°C. The
full scale error of the air entrainment measurement is less than
3%. To improve the estimation accuracy of the air entrainment
fraction, extreme care was also taken during the experimental
measurements to minimize the surrounding electromagnetic inter-
ference of the overhead high power electrical appliances during
the power shutoff and turnon. Also it should be noted here that,
the field measurements were often made when the pumps were
operating at low pump cutout water levels when air entrainment
due to attached surface vortex and falling jets from the inflow near
the pump intake might be present.

Conclusion
The effects of air entrainment on the pressure surges for un-

steady flow in a pipeline system with a weir discharge chamber
were investigated by using a new theoretical air entrainment
model. Numerical studies show that entrained, entrapped or re-
leased gases in the transient fluid system tend to:~a! modify both
the positive and the negative pressure peaks;~b! increase surge
damping; and~c! produce nonsymmetrical pressure surges with
respect to the system static pressure head. The pressure surges
show irregular longer periods of downsurge and shorter periods of
upsurge. The above transient characteristics are mainly due to the
changing of local air fraction and local wave speed along the fluid
system as a result of the transient variation of pressures and vice
versa. The effectiveness of the weir discharge chamber with weir
height above HWL is noted to be significant at higher values of
entrained air volumetric void fraction («>0.02). The numerical
results on the transient pressure show same magnitude and phas-
ing as the available field measurement data. This consistent ana-
lytical prediction of the pressure transient magnitude and phasing
was previously not possible with the existing constant wave speed
air entrainment models.
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Nomenclature

a 5 wave speed~m/s!
c 5 parameter for pipe constraint, Eq.~1!

D 5 pipeline mean diameter~m!
e 5 local pipe-wall thickness~m!
E 5 Young’s modulus of elasticity (N/m2)
f l 5 loss factor
g 5 gravitational acceleration (m/s2)

H 5 piezometric pressure head~m of water!
Hatm 5 atmospheric pressure~m of water!
HT 5 height of water column inside the discharge cham-

ber ~m!
HC 5 height of the discharge chamber~a design variable!

~m!
HWL 5 high water level, HWL5104.3 m

I 5 pump rotor moment of inertia including flywheel
(kg2m2)

k 5 time level attk5(Dtk

K 5 bulk modulus of the liquid (N/m2)
KT 5 effective bulk modulus of the gas-liquid mixture

(N/m2)
Ka ; Kr 5 empirical gas absorption and gas release coeffi-

cients
L 5 length of pipe~m!

LWL 5 low water level, LWL5101.10 m
Nk 5 instantaneous pump speed~rpm!
N 5 number of node points
n 5 polytropic compression index

np 5 number of pumps operating
P 5 local pressure (N/m2)

Pg 5 gas saturation pressure,Pg5Pg(T)
Pv 5 water vapor pressure,Pv5Pv(T)
Q 5 volumetric flow rate~liters/s!
t 5 instantaneous time in transient flow~s!

T 5 local water temperature (°C)
V 5 fluid velocity ~m/s!

WA 5 weir chamber width~Fig. 1~b!!
WB 5 weir chamber length~Fig. 1~b!!

WAB 5 WAB5WA3WB
x 5 pipeline distance~m!
Z 5 pipeline elevation~m!

Dtk 5 time-step atk-time level ~s!
Dx 5 node point distance along pipeline

DWL 5 DWL5HWL2LWL53.20 m
aga 5 fraction of gas absorption
agr 5 fraction of gas release

« 5 air volumetric void fraction in water
«T 5 total « if no gas release or absorption
«g 5 dissolved air in liquid atHatm
«o 5 an initial free entrained air
rw 5 density of water
f 5 slope of the pipeline

Subscripts

i 5 node point atx5 iDx
T 5 total
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Turbulence Control With Particle
Image Velocimetry in a
Backward-Facing Step1

A new concept of particle image velocimetry (PIV) for turbulence control is introduced.
The PIV method is used to measure the flow and supply information on the turbulence
quantities on-line for a control station connected to an actuator for flow manipulation.
With this ‘‘closed-loop’’ system of PIV and PID controllers, it is possible to control
increase or decrease turbulence quantities or length scales. Special techniques for the
on-line measurement are developed. The mean velocity is computed with a moving time
average operator and the Reynolds decomposition is applied for the calculation of the
Reynolds stresses, velocity fluctuations, or other instantaneous turbulence quantities. The
control concept is tested in a backward-facing step with a DC-motor based actuator for
mixing of the near wall flow. A length-scale estimate similar to the integral scale and the
Reynolds shear stress are calculated on-line. The results show it is possible to control the
turbulence and for example to compensate the disturbance on the Reynolds shear stress
caused by a manual change in flow velocity. The control frequency is quite slow (e.g.,
0.1–100 Hz), limited primarily by the image-grabbing operations and the computation of
the velocity vectors in the PIV station. For this reason the method is applicable for slow
processes, e.g., to steer the mixing processes or more generally to manage the turbulence
level or the length scales.@DOI: 10.1115/1.1516575#

1 Introduction
The control of turbulence and flow has always been an interest-

ing topic in fluid dynamics. The management of the turbulence
quantities, e.g., in order to decrease friction or to steer the mixing
process, is an attractive idea. Most of the literature about turbu-
lence control deals with cases in which drag reduction or flow
separation prevention are used to~a! reduce skin friction,~b! con-
trol turbulence level, or~c! affect transition delay. Prandtl@1#
pioneered flow control by using suction to delay boundary layer
separation from the surface of a cylinder. There exists a number of
publications on the matter: e.g., flow control is reviewed by Gad-
el-Hak @2#, control of turbulence in a boundary layer by Lumley
and Blossey@3#, and the control of combustion instabilities by
McManus et al.@4#.

The definitions for flow control or turbulence control are not
straightforward. Flow control is understood to affect the flow field
properties, such as mean velocities, or postpone flow separation.
Turbulence control is usually considered to lower the turbulence
level or to prevent transition to turbulence. In some cases turbu-
lence is also produced consciously in the flow. In that case, if
turbulence level is increased or decreased actively by a controller,
the definition of turbulence control becomes expanded to cover
not only the decreasing but also the increasing of turbulence, or
keeping it constant.

The next question is what turbulence phenomenon or property
should be monitored and what the goal of the control is. For the
control of combustion instabilities the goal can quite simply be the
suppression of large pressure fluctuations or large-scale vortices,
@4#. But for many other industrial processes the goal of turbulence
control is not always easy to set. The most intensive research is
done to reduce skin friction on surfaces. Many turbulent flows
display a combination of organized or coherent structures and

apparently disorganized or incoherent structures. In the wall re-
gion or the turbulent boundary layer, coherent structures account
for over 80% of the energy in turbulent fluctuations. The typical
current published results indicate drag reduction gains of 5%–
10% for boundary layer flows,@3#. However, theory indicates pos-
sible gains of 50%. Current knowledge rarely supports the practi-
cal use of boundary layer control and the penalty associated
with the control device often exceeds the saving derived from
its use,@5#.

More profitable applications for turbulence control can be
found in industrial devices. For example, in many mixing pro-
cesses the properties of the fluid are time varying and adjusting of
turbulence properties to a certain level is done by experience.
Proper control of turbulence properties can easily enhance process
efficiency considerably. Particle image velocimetry~PIV! opens a
new perspective on the active control of turbulence in transparent
fluids. Its clear advantage is that different velocity and length
scales can be estimated directly from two-dimensional vector
fields and also flow structures can be recognized. At the moment,
the repetition rate of image grabbing and the computation time of
vector fields restricts its use to processes needing slow control
responses. Depending on the PIV system and the computation
required, the control rate varies in the order of 0.1–100 Hz.

In order to test turbulence control possibilities with PIV, a test
flow channel with a mixing equipment is built. A backward-facing
step ~BFS! is quite a typical test apparatus having a shear layer
flow region which in this case is manipulated. Chun et al.@6# has
studied an active spanwise-varying local forcing issuing from a
thin slit near the separation line, and Lai et al.@7# has made re-
search on the effect of oscillating a small foil in plunge on the
reattachment of BFS flow. In this paper an on-line concept is used,
and a DC motor with adjustable speed is connected to a rotating
rod which is located on the wall before the step change. A control
station is adjusting the speed of the motor.

The content of the paper is following: a ‘‘closed-loop’’ control
system with PIV is introduced in Section 2. The experimental
setup is explained in Section 3. A length scale similar to the inte-

1Presented at the Hydraulic Machinery and Systems—20th IAHR Symposium.
Aug. 6–9, 2000, Charlotte, NC.
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gral scale and Reynolds shear stress are derived for on-line control
purposes and on-line control test runs are performed in Sections 4
and 5. Section 6 provides conclusions.

2 Turbulence Control With Particle Image Velocim-
etry „PIV …

2.1 Control Strategy. If time-average filtering for turbu-
lence quantity is used, the filter operation of the measured turbu-
lence quantityC can be achieved in a short period of time, e.g.,
with a moving average operatorCma . The desired goal for a
specific turbulence quantity is given by the set pointCsp . Ac-
cording to the difference, which is called control error,e(t)
5Csp2Cma , a controller connected to an actuator manipulate
the measured flow. A PIV-based control schema is shown in Fig.
1. The ‘‘closed-loop’’ system consists of a PIV system, a control
station, a process, and an actuator. In the conventional turbulence
control context, a PIV station together with a camera is ‘‘an intel-
ligent sensor’’ for characterizing turbulence. The process used as
an example later in this paper is a backward-facing step~BFS! in
a channel flow. The actuator is a DC motor connected to mixing
equipment.

This kind of feedback control is useful in processes, in which it
is necessary to change or manage turbulence according to the
predefined knowledge of the process. Another possibility for using
this kind of strategy is the necessity to maintain a certain turbu-
lence quantity level when the physical conditions of the flow are
changing. An example of this is a paper machine multiphase flow
in which the pulp-suspension quality may change and the turbu-
lence level should be kept constant in the BFSs of the inlet pipes
before the head box.

2.2 Control Frequency. Depending on the required control
frequency response, two different control approaches for PIV can
be defined:~a! with control frequency higher than the dynamics of
the turbulence phenomena and~b! with control frequency lower
than the dynamics of the turbulence. Strategy~a! is very challeng-
ing and the PIV system connected to the controller and the actua-
tor should be able to ‘‘touch’’ the flow structures in a similar way
like in an example of a feed-forward control of a turbulent bound-
ary layer in Rathnasingham and Breuer@8#. As a two-dimensional
measurement system, turbulence structure information, e.g., in a
boundary layer control case, would be beneficial even though the
analysis of the structure would not be an easy task. From the
control point of view the measurements may include too much
noise. However, the main problem is definitely that the control
frequency is far too low. This approach is difficult for rather high-
speed sensing techniques like hot-wire arrays, especially when the
detection of turbulence flow structures with these is even more
difficult than with the PIV method.

When the dynamic of the control can be slow, it opens a new
perspective on the control of turbulence with PIV. Using approach
~b!, the control frequency is not that critical and in many cases the
measured turbulence quantities and the length scales can be even
averaged or filtered over a short time period. The operation de-
creases noise and makes turbulence quantity estimation more re-
liable. As mentioned before, PIV as a two-dimensional measure-
ment system offers valuable information about coherent structures
which is available in each instantaneous vector field. By way of
conclusion regarding PIV compared with the hot-wire array tech-
niques, the advantage of the hot wire is the faster frequency re-
sponse, whereas large instantaneous two-dimensional measure-
ment fields are the strength of PIV.

2.3 Turbulence Quantity Estimation. There is a number
of interesting turbulence quantities which can be estimated with
PIV. Practically, a PIV velocity vector field can be considered as a
matrix of sensors with instantaneous velocity information in each
location. The quantity or the quantities chosen and used for the
control of turbulence depend on the process and the defined con-
trol task. In many cases turbulence kinetic energy~TKE! may be
one interesting quantity. Other possible quantities areurms and
v rms components individually. In an example of turbulent bound-
ary layer control by Rathnasingham and Breuer@8#, one goal is to
decrease theurms component. More generally, coherent structures
and their control play an important role in the dynamics of turbu-
lent shear flows like in an example of active control of streamwise
vortices and streaks in a boundary layer from Jacobson and
Reynolds@9#.

Several methods have been developed for the use of PIV in the
analysis of coherent structures such as length-scale analysis with
spatial correlations,@10#, and structure scale analysis like Piirto
et al.@11# and Eloranta et al.@12#. Also two-dimensional forms of
spectral and length scale analysis,@11#, can be useful in control.
Examples of length scales measured with PIV in turbulent bound-
ary layer are given by Tomkins and Adrian@13#, Piirto et al.@11#,
and Yoda and Westerweel@14#. In the last-mentioned paper the
effect of localized suction is examined. Later in this paper, length-
scale estimation is used and an integral scale-type quantity is
controlled.

Reynolds stress, especially Reynolds shear stress, is an impor-
tant quantity in mixing processes of shear layers. Also, it is often
used as an active turbulence control measure in wall-bounded
flows, like in Jacobson and Reynolds@9# and Choi et al.@15#. To
monitor time-dependence of Reynolds shear stress, instantaneous
u8v8 is measured. For TKE,urms, v rms, or more generally when
Reynolds decomposition is needed, the mean flow has to be esti-
mated. A method for estimating mean flow is explained later in
this paper and Reynolds shear stress is used as another control
example.

Fig. 1 PIV-based turbulence control system
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Several other quantities which can be computed directly from
velocity fields, such as kinetic energy, rotation, strain, or a pres-
sure difference estimate,@16,17#, can be other useful estimates.
These quantities can be easily combined with control strategies
because of their instantaneous nature, i.e., only one velocity field
is needed for the calculation of an estimate. At the moment esti-
mates for Taylor micro scales,@17#, and dissipation,@18#, are chal-
lenging for control purposes because of the spatial resolution lim-
its of PIV.

3 Experimental Setup
The backward-facing step~BFS! concept or flow over a

surface-mounted obstacle is investigated with particle image ve-
locimetry ~PIV!, e.g., by Scarano and Riethmuller@19# and Sousa
et al. @20#. The PIV measurement location of this BFS flow study
is shown in Fig. 2. The step-heighth (h510 mm) based Reynolds
number is Reh5U0h/n>10,000. The height of the inlet channel is
2h, the expansion ratioER53/2, and the width of the channel
4h. The measurement window size is 3h32h. U andV are used
for the streamwise (x) and for the spanwise (y) velocities, respec-
tively. The rotating axle is located 1h before the step change.

3.1 PIV Measurements. The flow for the PIV measure-
ments is seeded by hollow glass spheres with an average size of 5
mm. The PIV system consists of an Nd:YAG double-cavity laser
with light sheet optics and a CCD camera of resolution 1280
31024 pixels. For the computation of the velocity vector fields
the standard FFT-CC~cross-correlation algorithm! is utilized
without overlapping for the on-line control tests and with overlap-
ping of 50% for the off-line tests. The size of the interrogation
area is 32332 pixel. In the off-line tests, before the final interro-
gation lap also integer displacement technique with the interroga-
tion area of 64364 is applied and 300 vector fields are measured
with each constant DC motor velocity. In these off-line tests, rea-
sonably few~1–5! erroneous vectors (,0.15%) exceeding the
allowed velocity limit have been detected in each vector field of
size 80344 vectors. The spurious vectors have been replaced by
interpolation. The measurement random error for the standard
FFT-CC and an integer displacement technique is in the order of
0.04 pixel,@21#, and in this measurement case the increase in rms
velocities is about 0.02 m/s. Also a test measurement set with a
flow of zero velocity in the same measurement position leads to
an increase or decrease of about the average 0.02 m/s in fluctua-
tions. This minimum error is relevant for both the off-line and the
control tests, and the increase of about 0.015–0.02 m/s in rms
values can be found in all spatial locations of the measurement
window. For the control tests the error is bigger because no pre-
computation for the integer displacement is performed. In that
case the measurement error is in the order of 0.1 pixel,@21#. If the
rms bias in the order of 0.04 pixels in all spatial locations is
subtracted from this total measurement error of 0.1 pixel, the ran-
dom measurement error in on-line tests is in the order of 0.06
pixel. The rms profiles can be considered more comparable with
each other when the bias error at the base of the total error is
identified.

3.2 Inflow Before the Axle. The water flow is pumped into
a channel of length 70h before the BFS and the maximum mean

streamwise velocity is aboutU051.0 m/s before the sudden ex-
pansion in locationx/h522. The inflow mean streamwise veloc-
ity distribution before the axle is measured with PIV in the same
way with the off-line tests. The friction velocity is estimated using
the universal turbulent boundary layer velocity profile of Spalding
@22#. The laser sheet thickness is about 1 mm, and practically the
shortest reliable measurement distance from the wall is about 1
mm. Because of this shortest reliable distance, the friction veloc-
ity could not be solved alone with PIV measurements but together
with the boundary layer information of Spaldings velocity profile.
The boundary layer properties of the locationx/h522 are listed
in Table 1 and the inflow mean streamwise velocity profile to-
gether with Spalding’s profile are shown in Fig. 3. The boundary
layer properties are calculated together with Spalding’s profile.
According to the shape factorH5d*/ u>1.47, the inlet boundary
layer flow seems to be close to the constant pressure equilibrium
boundary layer.

3.3 Rotating Axle. A DC motor is connected to a rotating
rod. This cleaved axle is located upstream of the sudden expan-
sion of the BFS, as shown in Fig. 4, and it is used as an actuator
of this experimental set-up. The actuator located just before the tip
of the step change on the wall affects the turbulence quantities in
the shear layer. In Fig. 4 three different ways to affect the flow are
shown. The positive speed of the motor is forward, i.e., in the flow
direction ~a!, and the negative speed is against the flow~b!. The
axle can also be placed in the same plane with the surface of the
wall ~0 rpm! and thus it does not affect the flow~c!. The distance
of the left-side edge of the rotating half-axle from the BFS is 10
mm (1h) and the diameter of the rod is 2 mm of which, depend-
ing on the axle position, maximum half height (0.1h) is inside the
flow. The actuator affects the flow in various ways: the rotating

Fig. 2 Location of measurement window „gray area … in
backward-facing step at x ÕhÄ1.5 . . . 4.5 from step change. Ro-
tating rod is located 1 h before the expansion.

Table 1 The boundary layer properties at location x ÕhÄÀ2

d'6.4 mm U0'1.0 m/s Red5U0d/n'6400
d* '0.94 mm ut'0.051 m/s Red*5U0d* /n'940
u'0.64 mm Reu5U0u/n'640 Ret5utd/n'326

Fig. 3 The mean streamwise inflow velocity profile at the lo-
cation x ÕhÄÀ2 together with the Spalding’s velocity profile for
turbulent boundary layer

Fig. 4 Rotating axle in backward-facing step channel. The
positive rotation of axle is forward, i.e., in the flow direction „a…,
and the negative against the flow direction „b…. The axle can
also be placed so as not to affect the flow „c….
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rod ~1! creates a passive barrier with changing height to the
boundary layer, and~2! disturbs actively the boundary layer flow
structures. In Fig. 5, streamwise r.m.s. velocity profiles are plotted
0.7h upstream and downstream of the rod. No significant differ-
ences in mean streamwise velocity or rms profiles with the DC
motor maximum speeds26000 and 6000 exist in the inflow side
upstream of the rod (x/h520.7h). In the BFS side, atx/h
50.7h downstream of the rod, the negative DC motor speed
causes an enhanced shearing process on the top of the rod and
freestream and thus increases turbulence level having the maxi-
mum streamwise r.m.s. velocity about 0.28 aty/h50.18 from the
bottom of the channel wall. The positive DC motor rotation causes
increased turbulence intensity closer to the wall boundary layer
region betweeny/h50.1– 0.4 than the negative DC motor speed
does. This can be explained with the smaller velocity difference in
the shearing between the freestream velocity and the tangential
velocity of the rod. The rod tangential velocity is always smaller
than the free stream velocity. When the motor positive velocity is
increased, the velocity difference in the shearing diminishes and
visa versa.

3.4 Control Station and PIV. The control station is linked
together with a PIV station via RS-232. It receives the turbulence
information and acts in a very similar way to the process control
stations used in industry having features like on-line graphics, a
user-interface for on-line parameter changes, the storing of the
measured~or computed! quantities on the hard disk, and PID con-
trollers.

A commercial PIV system is used and applications programmed
with a C-language type code together with the Turbo-C DLLs
~dynamic link library! to calculate the on-line turbulence esti-
mates. Besides the computation of the turbulence characteristics,
it intervals the measurements to the user-specified cycles. The
tasks of the PIV station in one control cycle are as follows:

1. Wait for the right time after the previous cycle to grab dual-
images to the memory.

2. Compute the velocity vector field.
3. Compute the on-line turbulence quantities.
4. Send the quantities to the control station via RS-232.

The control station receives the on-line turbulence information
from the PIV system and further calculates the data. With the user
interface, parameters for the PID controllers, control output limits,
and the setpoints for the controlled turbulence quantity can be
changed during the control tests. In the control tests of this paper,
the PI controller without derivative part is used. In the increment
form together with the filtering, it is

u~ t !5u~ t21!1KP@e~ t !2e~ t21!#1KIe~ t ! (1)

e~ t !5csp~ t !2cma~ t ! (2)

cma~ t !5
1

Nma
(
k50

Nma21

c~ t2k! (3)

in which u(t) is the last calculated control output value and the
new speed of the DC motor.KP andKI are the coefficients for the
gain and the integration terms of the controller, respectively. The
previous control cycle values are for the control outputu(t21)
and for the control errore(t21). The turbulence quantity, the
instantaneous~on-line! value for the desired quantity, is marked
with C and indexed sp for the setpoint and ma for the moving
average which is the average of the measurements of the last
cyclesNma in Eq. 3. The turbulence quantities in this test case are
averaged over a period of 50 seconds when one control cycle is
2.5 s. This means that the moving average estimate is computed
with the last 20 instantaneous samples.

Other controllers besides PID ones can be attached to the con-
trol station, like self-tuning controllers@23,24#, and multiple
input-multiple output~MIMO ! controllers@24,25#, depending on
the turbulence control tasks. The control station software is writ-
ten also with Turbo C11 like the DLLs of the PIV station.

4 Control of Integral Scale
The first turbulence quantity chosen to be controlled is based on

the streamwise velocity correlation coefficient function~CCF! and
thus the length scales in the flow. The integral length scales with
the correlation curves are first tested in the off-line test for the
time series of the velocity fields with the constant different speeds
of the DC motor and then a control test is run. In the following
tests it is assumed that the flow velocity is constant, i.e., there is
no variations or changes in the main pump of the loop.

4.1 Off-Line Test. In the case of PIV, the length scale
analysis is typically carried out with the spatial CCF instead of
time-resolved CCF. The correlations and the spatially computed
integral scales decrease when the positive speed of the DC motor
is increased. The results measured in the whole measurement win-
dow are shown in Fig. 6. When the DC motor positive velocity is
increased, the difference in the shearing between the freestream
velocity and the tangential velocity of the rod diminishes and the
length scales in the measurement region are reduced. However,
the rod tangential velocity is always smaller than the freestream
velocity. The normalized correlation is calculated for the stream-
wise velocity component in the streamwise direction. Limited to
the maximum lag distance depending on the size of the vector
field, the correlation function in discrete form is given in the fol-
lowing equations:

r̂ u~D i !5
1

~p2D i !n (
i 51

p2D i

(
j 51

q

(
j51

n S u8~ i , j ,j!•u8~ i 1D i , j ,j!

urms~ i , j !•urms~ i 1D i , j ! D
(4)

u8~ i , j ,j!5U~ i , j ,j!2Ū~ i , j ! (5)

Ū~ i , j !5
1

n (
j51

n

U~ i , j ,j! (6)

urms~ i , j !5A1

n (
j51

n

^u8~ i , j ,j!&2 (7)

in which D i is the spatial lag between the velocities,u8 the fluc-
tuation velocity, andu( i , j ,j) the instantaneous velocity in the
position i , j of a particular vector fieldj.

In the computation of the normalized correlation, the time-
average and the rms value should be known. The exact values for
them are not available, because the control operations affect them
continuously. In this flow case with the constant flow presump-
tion, it is suggested to operate with the real velocities and the

Fig. 5 Streamwise rms velocity profiles upstream and down-
stream from the axle with positive and negative maximum
speeds of DC motor
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average of Eq.~6! is replaced with 0 and the rms value of Eq.~7!
with 1, leading to a non-normalized correlation of one velocity
vector field (n51). Because the Reynolds decomposition and the
scaling with the r.m.s. are not used, the on-line spatial correlations
and the integral scale computed from them include information on
the scales of the flow velocity structures besides the fluctuation
velocity structures. Thus, with this calculation technique for CCF,
it is important that the main flow velocity is kept constant. Also,
the integral scale values are higher than the normalized ones
would give. When the correlations are computed at the momentt,
the estimate calculated with the Euler rule for an instantaneous
integral scale is

Lux
~ t !5 (

D i 50

p21

r u
∧~D i ,t !* dx (8)

in which r represents the correlations of Eq.~4! at the momentt
and dx is the distance between two adjacent velocity vectors

(5one lag distance! in the streamwise direction. The nonlinear
effect of motor speed on the integral scale can be noticed in
Fig. 6~b!.

The interpretation of the integral scale is the longest connection
of the velocities,@26#, or the velocity structures in the flow field
and it is considered to be a length scale of the large structures. The
maximum distance is limited to the size of the measured window
and therefore the correlations and the integral scales describe the
flow structures and the correlations shorter than that. Furthermore,
the non-normalized correlation curves do not reach zero. Because
of these features, the integral scale solved here is relative and
cannot be compared with the absolute values of integral scales for
certain flows in which the maximum lag distance is not limited
until the normalized correlation coefficients reach a stable zero.

4.2 Control Test. In the integral scale control test the main
purpose is to keep the non-normalized integral scale or change it
into the desired value~setpoint! given by the user. The PI control-

Fig. 7 Measured „MA filtered … and setpoint values for the integral scale „a… and
the control output „b…

Fig. 6 Correlation curves for streamwise velocity in streamwise direction with different constant DC
motor speeds „a… and their integral scales „b…
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ler is experimentally tuned by some step changes and after that
one test run is shown in Fig. 7~a! and~b!. The higher the positive
~forward! speed is, the shorter is the integral scale, which was also
noticed in the integral scale of the off-line tests of Fig. 6. Another
observation regarding the computation of the integral scale esti-
mates is the existence of different length scales in different parts
of the flow,@10#. In this case the main flow in the upper part of the
channel has totally different flow structures and length scales
compared with the recirculation zone. For this reason, the compu-
tational area should be chosen according to the flow structures to
be measured. In this control case, the computational area is lim-
ited to the shear layer part and the recirculation zone. Note that
the different computational area in on-line and off-line tests leads
to different integral scales with the same DC motor speeds.

The control response of step changes varies, depending on the
direction of the change. In this case, the effect of the manipulator
alters with different DC motor speed ranges, which was also no-
ticed in Fig. 6. The low frequency (T5200 s) in the measured
integral scale of Fig. 7~a! could not be compensated by the tuning
of the controller. The question remains whether the moving aver-
age operation in the control station made it difficult to tune the
control parameters or whether it was caused by other reasons in
the process. However, the results confirm it is possible to control
a turbulence length scale.

5 Control of Reynolds Shear Stress
The second control test is based on the Reynolds stresses. In

two-dimensional flow measurements different instantaneous val-
ues foru8u8, u8v8, andv8v8 can be computed. In this backward-
facing step~BFS! case with two-dimensional measurements, prob-
able the most interesting value to describe the turbulent mixing is
the estimate for the shear stress. Forn velocity vector fields Rey-
nolds shear stress is

u8v8~ i , j !5
1

n (
j51

n

u8~ i , j ,j!v8~ i , j ,j!. (9)

5.1 Off-Line Test. In the instantaneous estimate foru8v8
only one fluctuation field is used (n51). A challenging part from
this point of view is the computation of the fluctuations. One way
to solve the estimate for fluctuations could be a method based on
spatial fluctuation or LES-decomposed velocity fluctuation intro-
duced by Adrian et al.@27# and implemented in special particle
image velocimetry~PIV! vector analysis software by Piirto et al.
@17#. The advantage of the spatial fluctuation operation is the pos-
sibility to estimate fluctuations and ‘‘coherent structures’’ in in-
stantaneous velocity fields. However, in the actual definition of
the Reynolds stresses, the velocity fluctuations are defined in the
time-mean sense. Thus, the computation of the time-average is
performed by another MA operation. The mean flow is computed
with the circular stack of instantaneous vector fields in each con-
trol cycle. The minimum length for the MA filter is found with the
error function of Fig. 8 in which MA field is compared to the
average field computed off-line for 300 vector fields with the con-
stant DC motor speed21000. In this case the MA filter length
Mma520 is chosen when the error with any constant motor
speeds26000 . . .6000 rpm is less than 2.5% when normalized
by U0 . The MA filter length should not be too long either, be-
cause the mean flow estimates will become biased because of the
on-line control operations. The moving average~Eq. ~10!! and the
fluctuation~Eq. ~11!! for both the velocity components are com-
puted first. For the streamwise component they are

Ū~ i , j ,t !5
1

Mma
(
k50

Mma21

U~ i , j ,t2k! (10)

u8~ i , j ,t !5U~ i , j ,t !2Ū~ i , j ,t !. (11)

Again, U( i , j ,t) is an instantaneous velocity in the positioni , j of
a particular vector field at the last sampled momentt and the
index k defines the earlier sampled vector fields. The instanta-
neous Reynolds shear stress is solved at a momentt as

u8v8~ i , j ,t !5uu8~ i , j ,t !v8~ i , j ,t !u. (12)

The absolute value in Eq.~12! is taken because of the spatial
average operation. If the average of the Reynolds stresses in a
certain spatial area is calculated without the absolute operator, the
coherent structures causing the different signs for the Reynolds
stresses can compensate each other. In the case of mixing, only
the absolute values for the instantaneous stresses are of interest.

Fig. 8 Error of average values for streamwise „U… and span-
wise „V… velocities in function of moving average filter length
Mma

Fig. 9 Examples of MA velocity field „a…, fluctuation field „b…,
and instantaneous Reynolds shear stress „c…
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So the estimate for the instantaneous Reynolds stress in a particu-
lar area of the flow is computed with the Eqs.~12! and~13!. The
spatial average operator for a specific area of the flow is

c~ t !5
1

~Nx22Nx111!~Ny22Ny111! (
i 5Nx1

Nx2

(
j 5Ny1

Ny2

c~ i , j ,t !.

(13)

An example of the moving average vector field (Mma520) is
shown in Fig. 9~a!. An example of the fluctuation field and an
instantaneous absolute value for Reynolds shear stress calculated
from the fluctuation fields are shown in Figs 9~b! and~c!, respec-
tively. A certain user-defined spatial area is averaged in order to
create one turbulence measurement value per control cycle. For
this reason it is important to understand both the meaning of the
chosen turbulence quantity and the effect of the spatial area in
which the chosen quantity is controlled. In this BFS example the

turbulence quantities, like the correlations, are totally different in
the main stream~upper part of the channel! compared with the
recirculation area. Therefore, the user-defined computational area
in the control test is limited to the shear layer part of the BFS
defined by the spatial parametersNx1 , Nx2 , Ny1 , Ny2 . Before the
on-line tests, an example of the absolute Reynolds shear stress
with constant DC motor speeds for the whole measurement win-
dow is shown in Fig. 10. Slow rotation speed of the rod causes
periodic disturbances leading to stronger coherent structures in
Reynolds shear stress than high rotation speed does. Again note
that in the on-line control runs, because there are more coherent
structures in the shear layer part defined by the spatial parameters
Nx1 , Nx2 , Ny1 , Ny2 , the values are higher than in this off-line
example for the whole measurement window.

5.2 Control Test. In the Reynolds shear stress control both
the setpoint change test and the disturbance test are carried out
and the results shown in Figs. 11 and 12, respectively. The speed
of the DC motor is negative against the flow, which means strong
periodic disturbance especially with low-speed range. This is
caused by the periodic barrier effect of the manipulator. The main
source of the noise in measurement signal is that there are rela-
tively few coherent structures in each fluctuation field, as already
shown in Fig. 9~b!, causing the statistical error. With the moving
average filtering in the control station, the coherent structure in-
formation is increased and the measured signal becomes more
acceptable for the control tests. The setpoint changes, depending
on their directions, give very different control responses as can be
noticed in Fig. 11. An interesting downward slope in the control
signal from 2500 to 4500 s demonstrates the operation of the
controller’s integrating part to drift the error signal in to zero.

In the second test, shown in Fig. 12, two disturbances are gen-
erated by changing the velocity of the flow by changing the speed
of the main pump of the test loop. This is done with the step
change, first decreasing it by 20% and then increasing it by the
same amount at the moments 9500 and 11150 s. The controller

Fig. 10 Off-line test for absolute Reynolds shear stress. The
samples are connected with lines.

Fig. 11 Measured „MA filtered … and setpoint values for Reynolds shear stress „a… and
control output „b…
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can compensate the disturbance and the Reynolds shear stress
receives the setpoint value. Also, this test shows the difference in
the responses, depending on the direction of the Reynolds shear
stress set point change.

6 Conclusions
A new concept of turbulence control with particle image veloci-

metry ~PIV! is introduced. A PIV system can be considered as an
intelligent sensor for turbulence analysis. The ‘‘closed-loop’’ PID
controller with a PIV system, used as an example of the method,
is the following: ~1! A PIV station grabs images and computes
them into velocity vector fields,~2! instantaneous turbulence
quantities, correlations and length scales are estimated,~3! the
estimates calculated in the PIV station are send to the control
station,~4! the estimates are averaged over a relatively short time
period~moving average! to decrease the noise, and~5! the differ-
ence between the moving averaged estimate and the desired set-
point (5control error! is used to manage the flow turbulence with
controllers, and finally the control signals are sent to the actuator.

Special instantaneous turbulence quantities are developed for
the control purpose. The integral scale is based on the limited
spatial data and is computed from the non-normalized correla-
tions, requiring time invariant mean flow velocity. The mean ve-
locity can also be computed in the PIV station over a relatively
short period of time. This mean velocity is used for the Reynolds
decomposition and thus the instantaneousu8v8 can be calculated.
Same scheme can be applied in the computation of turbulence
kinetic energy or other quantities calculated from the velocity
fluctuations.

The method is tested in a BFS. A DC motor based actuator is
used to manipulate the flow on the wall just before the sudden
expansion. Three different control tests are made which show it is
possible to manage the turbulence and compensate the distur-
bances in the turbulence properties caused for example by the
manual change of the flow velocity. At the moment, the restriction
of the control system with PIV is a fairly low control frequency
due to the time-consuming image processing, limiting its use to
processes like mixing or shear layer control based on periodically
formed turbulence quantities.
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When the particle is in the order of microns, flow through the
small opening produces a large velocity gradient, leading to high
viscous dissipation. Understanding the flow field is critical in de-
termining the power requirement. In this paper, we studied water
flow through filters fabricated by micro-electro-mechanical system
(MEMS) techniques. The pressure drop calculated by a three-
dimensional numerical code of the Navier-Stokes equations is in a
resonable agreement with the experimental data if the diameter
and the side wall profile of the holes are measured with high
accuracy.@DOI: 10.1115/1.1514209#

Introduction
Filtration through thin perforated plates~filters! is a common

technique to collect solid particles suspended in fluids,@1#. With
the advent of micro electro mechanical system~MEMS! technol-
ogy, micromachined filters have been designed,@2–4#, to isolate
biological agents in the order of microns. The filter hole sizes
must be less than or comparable to the sizes of target biological
agents. Accordingly, the corresponding Reynolds numbers (ReD)

are less than 50, much lower than those of conventional filters.
The Reynolds number is defined asUinD/bn, whereUin is the
inlet velocity,D the hole size,b the opening factor~ratio of area
of holes to total area! of the filter, andn the kinematic viscosity of
the fluid. Uin /b represents the velocity of the fluid passing
through the opening.

The empirical formulas established for the conventional filters,
@5,6#, cannot accurately predict the pressure drop through the mi-
crofilters,@4#. Dagan et al.@7# presented an infinite-series solution
to the creeping viscous motion of flow through a single hole.
Hasegawa et al.@8#, who investigated liquid flow through very
small orifices~8.8–1000mm!, demonstrated that the measured
pressure drops deviated above those predicted by the Navier-
Stokes numerical simulation as the hole size was decreased to
micron order.

On the other hand, Yang et al.@9# presented a new design rule
to predict the pressure drop of air flow through MEMS filters by
embracing the Navier-Stokes numerical simulation with precise
geometrical data of the filter. Likewise, we would anticipate good
correlation with the Navier-Stokes numerical simulation for water
flow through the MEMS filters. It is critical to precisely predict
the pressure drop of fluid, which constitutes the basis of biomedi-
cal applications. In this context, we studied the pressure drop of
water flow through the MEMS based microfilters, and compared
the experimental data with the results from three-dimensional
Navier-Stokes numerical simulation,@9#.

MEMS Filters
The MEMS filters were fabricated by both surface and bulk

micromachining technologies. For details in fabrication processes,
please refer to Yang et al.@4#, where they showed that the depo-
sition of Parylene C polymer on the surface greatly improves the
strength of the MEMS filters. Figure 1 illustrates the MEMS fil-
ters by photographs, geometric configuration and the sidewall pro-
files taken from a scanning electron microscope~SEM!. The fil-
tering region was an 8 mm3 8 mm membrane with a thickness of
3 mm, while the frame region was constructed from a 500-mm-
thick silicon wafer. Two filters of different hole sizes~MEMS
Filter I and MEMS Filter II, respectively! were fabricated and
tested~Table 1!.

As shown in Fig. 1~c!, sidewalls were not perfectly perpendicu-
lar to the surface of the filters. Consequently, the diameters of the
front and the back sides were different~Table 1!. This variation
inevitably occurred as a result of etching processes,@10–12#.
Here, the opening factor~b! was calculated from the hole diam-
eter (D) of back side and spacing between the holes (s). The
precision in measuring the hole diameter of the MEMS filters
influenced the accuracy of pressure prediction. A piezo-
electrically driven optical interferometer type profiler~WYKO!,
which provides a lateral resolution of approximately 10 nm~0.01
mm!, was used to profile the surfaces of filters~Fig. 2~a!!. Three
random locations on each MEMS filter were profiled. Since the
hole geometry was not uniformly circular, the diameters were
measured in both horizontal and vertical directions. A total of 57
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holes were sampled using the WYKO system, from which the
probability density functions of the hole diameter and the mean
diameters were obtained. Figure 2~b! shows the probability den-
sity function of MEMS Filter I. The sidewall geometry of the
SEM picture was also profiled, modeled, and incorporated in the
three-dimensional Navier-Stokes numerical simulation~see Fig.
1~c!!. The measured dimensions of two MEMS filters tested in
this experiment are shown in Table 1.

Experimental Apparatus
A water channel was designed to measure the pressure drops

through the MEMS filters. The water channel was built with an
inlet, a settling chamber with sponge and wire mesh, a contraction
chamber, and a test channel in which the MEMS filters were po-
sitioned. The test channel spanned 16 cm with a cross-section area
of 8 mm38 mm to accommodate the filtering region of the
MEMS filters. The contraction contour was derived from a fifth-
order polynomial equation to yield an area ratio 3:1. A pressure
transducer~Druck LPX 9381, range 0 to 5 psi! was used to mea-
sure the static pressure difference between upstream and down-
stream of the contraction within 0.1% accuracy. By the continuity
equation and Bernoulli’s principle, we derived the volumetric flow
rate,@4,9#. The calculated flow rates validated those obtained from
the electromagnetic flow meter~EMCD flow meter, type Mag
1100!, which was installed downstream of the test channel. A
second pressure transducer, which was connected to two pressure
taps at 10 mm upstream and 10 mm downstream from the testing
filter, measured the pressure drop through the MEMS filters. The
uncertainty in both the pressure and inlet velocity measurement
was61.5%. The propagated uncertainties in other physical quan-
tities, which were estimated to be within the 95% confidence level
according to Kline et al.@13# and Abernethy et al.@14#, are in-
cluded in the caption of Fig. 3.

Fig. 1 Fabricated MEMS Filters with circular holes and thick-
ness of 3 mm: „a… photographs of the MEMS Filter „b… geometric
factors in the MEMS Filter „not to scale … „c… side-wall profiles
and SEM pictures of the filtering hole

Table 1 Two MEMS filters „uncertainty in DÁ1% and in b
Á2.8%…

Name

Hole
Diameter
(D, mm!

Opening
Factor
~b, %!

Filter
Thickness
(t, mm!

MEMS Filter I
front side/back side

6.3/6.0 11.2/10.1 3.0

MEMS Filter II
front side/back side

7.4/7.2 15.3/14.5 3.0

Fig. 2 „a… Image of the MEMS filtering holes by WYKO surface
profiler and „b… probability density function of the hole size for
MEMS Filter I „see Table 1 …
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A constant hydrostatic pressure head was established using a
water tank 1.5 meters above the flow channel. The test fluid used
was distilled and deionized water~resistivity, .4 MV-cm). The
water was delivered to the tank using a pump~Little Giant Pump
Company, model A-430!. Purification of the unwanted micropar-
ticles was established using two types of filters:~1! water was
pumped through a capsule filter~Fisher Scientific, pore size 0.45
mm! for two hours prior to experiment and~2! during data collec-
tion, water was continuously pumped through a Millipore glass
fiber filter ~Fisher Scientific, pore size 0.8mm!. The flow rate was
regulated by a ball valve~McMaster-Carr Supply CO., Nylon
miniature ball valve! located upstream from the inlet.

Results and Discussions
To verify our experimental setup, we compared the pressure

drop through conventional screens with Wieghardt’s empirical for-
mula, @5#. Our measured pressure drop fell within the acceptable
scattering range observed by Wieghardt~not shown!. To compare
the pressure drops through the MEMS filters, a formula was es-
tablished using the three-dimensional numerical simulations for
laminar water flow at low Reynolds number:

K5
DP

~1/2!rUin
2 5b22F3.1

t

D
13GF10.7

vb

UinD
10.22G , (1)

for 5%,b,45%, 0.08,t/D,0.65 and 1,UinD/bn,100,
whereK denotes the pressure drop coefficient,DP the pressure
drop through the filters, andr the density of the fluid.

Each individual MEMS filter contained approximately half a
million holes of varying sizes. The combination of complex hole
geometry and a large number of holes made direct simulation of
the entire flow field computationally challenging. Alternatively,
we modeled and simulated the averaged geometry of hexagonal
domain with a single hole out of the filters. This approach might
have been inaccurate. The variation in the diameters of individual
holes could have nonlinearly affected the pressure drop according
to Eq. ~1!. Nevertheless, we confirmed that this effect was negli-
gible ~less than 2%! by estimating the nonlinear effect of the hole
size distribution on the pressure drop using the probability density
functions of the hole diameter and Eq.~1!. The sidewall profiles,
which also influenced the accuracy of the pressure drop predic-
tion, was taken into account in the three dimensional Navier-
Stokes numerical simulation. For details in numerical simulations,
please refer to Yang et al.@9#.

The three-dimensional simulation demonstrated that the pres-
sure drop coefficient varied inversely with the opening factor~b!
to the second power and proportionally with the Reynolds number
to the first power. As shown in Fig. 3, the numerical simulation for
MEMS filter I overestimated the pressure drop at ReD,2, but
underestimated at ReD.5. For the MEMS filter II, the numerical
simulation overestimated in the entire testing range of ReD . The
scattering of the pressure drop may be mainly related to the sen-
sitivity of the numerical simulation to the hole diameter,D. De-
spite the installation of two purification filters, impurities could
remain from the sponge and wire mesh used to regulate flow
upstream. Moreover, the polymer, Parylene C, used to coat the
surface of MEMS filters, is known to absorb water over prolonged
period of immersion in water.

Nevertheless, the experimental data reasonably agreed with the
conventional Navier-Stokes three-dimensional numerical simula-
tion with a maximum of 40% deviation in the range of 2,ReD
,20, suggesting that the Navier-Stokes equations in this range of
Reynolds number could be applied to model the fluid flow at the
micron scale. The characteristic flow scale~the hole size of
MEMS filter! was larger than the molecular length scale charac-
terizing the structure of the fluid. Thus, the surface force effect,
which might have been dominant in the micron scale, seemed not
critical.

Conclusions
Pressure drops across two MEMS filters with hole sizes of 6

mm and 7.2mm, opening factors of 10.1% and 14.5%, and Rey-
nolds numbers from 20 down to 0.7 were measured and compared
with three-dimensional numerical simulation. Geometric factors
including precise ratio of hole diameter to filter thickness, side-
wall profile, opening factors, and Reynolds number, were taken
into account for accurate prediction of the pressure drop. By in-
corporating the three-dimensional numerical simulation with ac-
curate geometrical data, we were able to reasonably predict the
pressure drop through the MEMS filters.
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